A Generalised Balancing Sequence and Solutions of Diophantine Equations x2± pxy

被引:0
|
作者
Kameswari, P. Anuradha [1 ]
Anoosha, K. [1 ]
机构
[1] Andhra Univ, Dept Math, Visakhapatnam, Andhra Pradesh, India
来源
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS | 2022年 / 13卷 / 01期
关键词
Diophantine equation; Balancing sequences;
D O I
10.26713/cma.v13i1.1698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a generalization of balancing sequences and investigate some properties of the generalised balancing sequences in this paper. For a positive integer p we solve for the Diophantine equations, x(2) +/- pxy + y(2) +/- x = 0 and express its solutions in terms of generalised balancing sequences.
引用
收藏
页码:253 / 263
页数:11
相关论文
共 40 条
  • [21] On solutions of the simultaneous Pell equations and x2 - (a2-1) y2=1 and y2 - pz2=1
    Irmak, Nurettin
    Periodica Mathematica Hungarica, 2016, 73 (01) : 130 - 136
  • [22] ON THE DIOPHANTINE EQUATIONS x2+2α3β19γ = yn AND x2+2α3β13γ = yn
    Ghadermarzi, Amir
    MATHEMATICA SLOVACA, 2019, 69 (03) : 507 - 520
  • [23] INTEGRAL SOLUTIONS OF AN INFINITE ELLIPTIC CONE x2 = 9y2
    Somanath, Manju
    Raja, K.
    Kannan, J.
    Akila, A.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2020, 19 (11): : 1119 - 1124
  • [24] ON THE DIOPHANTINE EQUATIONS z2 = f(x)2 ± f(y)2 INVOLVING LAURENT POLYNOMIALS
    Zhang, Yong
    Zargar, Arman Shamsi
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2020, 62 (02) : 187 - 201
  • [25] On the Diophantine equations z2=f(x)2±f(y)2 involving quartic polynomials
    Zhang, Yong
    Zargar, Arman Shamsi
    PERIODICA MATHEMATICA HUNGARICA, 2019, 79 (01) : 25 - 31
  • [26] The Diophantine equation x2 - (t2 + t)y2 - (4t+2)x + (4t2+4t)y=0
    Tekcan, Ahmet
    Ozkoc, Arzu
    REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (01): : 251 - 260
  • [27] ON THE DIOPHANTINE EQUATIONS z2 = f(x)2 ± f(y)2 INVOLVING LAURENT POLYNOMIALS II
    Zhang, Yong
    Tang, Qiongzhi
    Zhang, Yuna
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (02) : 1023 - 1036
  • [28] On the Non-Linear Diophantine Equations 4x - ay = dz2 and 4x
    Tadee, Suton
    Pintoptang, Umarin
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (03): : 563 - 567
  • [29] On the set of solutions of x2 - axy - y2 = ±1 over some finite fields
    Prugsapitak, Supawadee
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (04): : 1435 - 1443
  • [30] The Diophantine equation x2−(t2+t)y2−(4t+2)x+(4t2+4t)y=0
    Ahmet Tekcan
    Arzu Özkoç
    Revista Matemática Complutense, 2010, 23 : 251 - 260