A Generalised Balancing Sequence and Solutions of Diophantine Equations x2± pxy

被引:0
|
作者
Kameswari, P. Anuradha [1 ]
Anoosha, K. [1 ]
机构
[1] Andhra Univ, Dept Math, Visakhapatnam, Andhra Pradesh, India
来源
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS | 2022年 / 13卷 / 01期
关键词
Diophantine equation; Balancing sequences;
D O I
10.26713/cma.v13i1.1698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a generalization of balancing sequences and investigate some properties of the generalised balancing sequences in this paper. For a positive integer p we solve for the Diophantine equations, x(2) +/- pxy + y(2) +/- x = 0 and express its solutions in terms of generalised balancing sequences.
引用
收藏
页码:253 / 263
页数:11
相关论文
共 40 条
  • [1] Solutions to the Diophantine Equation x2
    Yow, Kai Siong
    Sapar, Siti Hasana
    Low, Cheng Yaw
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2022, 18 (04): : 489 - 496
  • [2] The group of integer solutions of the Diophantine equation x2
    Ghasemi, Ghader
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (50): : 235 - 253
  • [3] On the diophantine equation x2 + 2 = yn
    Sury B.
    Archiv der Mathematik, 2000, 74 (5) : 350 - 355
  • [4] On the Diophantine equation x2 + C = yn
    Rayaguru, Sai Gopal
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01): : 69 - 77
  • [5] The diophantine equation x2 + paqb = yq
    Godinho, Hemar
    Neumann, Victor G. L.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (09) : 2113 - 2130
  • [6] SOLUTIONS OF SOME DIOPHANTINE EQUATIONS IN TERMS OF HORADAM SEQUENCE
    Keskin, Refik
    Siar, Zafer
    Duman, Merve Guney
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2019, 173 (03) : 79 - 91
  • [7] A Generalized Fibonacci Sequence and the Diophantine Equations x(2) +/- kxy - y(2) +/- x = 0
    Bahramian, Mojtaba
    Daghigh, Hassan
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2013, 8 (02): : 111 - 121
  • [8] A NOTE ON THE DIOPHANTINE EQUATION x2 + qm = cn
    Terai, Nobuhiro
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (01) : 20 - 27
  • [9] A note on a theorem of Ljunggren and the Diophantine equations x2–kxy2 + y4 = 1, 4
    Gary Walsh
    Archiv der Mathematik, 1999, 73 : 119 - 125
  • [10] On the diophantine equation x2 + 2a · 19b = yn
    Gökhan Soydan
    Maciej Ulas
    Hui Lin Zhu
    Indian Journal of Pure and Applied Mathematics, 2012, 43 : 251 - 261