A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst

被引:337
作者
Steigerwalt, ES
Deluga, GA
Cliffel, DE
Lukehart, CM
机构
[1] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA
[2] Univ Minnesota, Corros Res Ctr, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
关键词
D O I
10.1021/jp011633i
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multistep deposition and reactive decomposition of a precursor molecule containing one Pt and one Ru atom on herringbone graphitic carbon nanofibers (GCNFs) affords a Pt-Ru/GCNF nanocomposite containing Pt-Ru alloy nanoclusters widely dispersed on the GCNF support. The nanocomposite has a total metal content of 42 wt % with a bulk Pt/Ru atomic ratio of ca. 1:1, and metal alloy nanoclusters having average particle sizes of 6 nm as calculated from XRD peak widths or 7 nm as measured directly from TEM images. XRD and electrochemical analysis of the nanocomposite as-prepared and stored under ambient conditions reveals the presence of small amounts of Ru metal and oxidized metal species. Comparative testing of this nanocomposite and an unsupported Pt-Ru colloid of similar surface area and catalyst particle size as anode catalysts in a working direct-methanol fuel cell (DMFC) reveals a 50% increase in performance for the Pt-Ru/GCNF nanocomposite. More detailed study of the catalytic performance of metal alloy/GCNF nanocomposites as DMFC anode catalysts appears to be warranted.
引用
收藏
页码:8097 / 8101
页数:5
相关论文
共 38 条
[1]   Growth of graphite nanofibers from the decomposition of CO/H2 over silica-supported iron-nickel particles [J].
Anderson, PE ;
Rodriguez, NM .
JOURNAL OF MATERIALS RESEARCH, 1999, 14 (07) :2912-2921
[2]   Investigation of direct methanol fuel cells based on unsupported Pt-Ru anode catalysts with different chemical properties [J].
Aricò, AS ;
Cretì, P ;
Modica, E ;
Monforte, G ;
Baglio, V ;
Antonucci, V .
ELECTROCHIMICA ACTA, 2000, 45 (25-26) :4319-4328
[3]   Effect of carbon-supported and unsupported Pt–Ru anodes on the performance of solid-polymer-electrolyte direct methanol fuel cells [J].
A.S. Aricò ;
A.K. Shukla ;
K.M. El-Khatib ;
P. Cretì ;
V. Antonucci .
Journal of Applied Electrochemistry, 1999, 29 (6) :673-678
[4]   Graphite nanofibers as an electrode for fuel cell applications [J].
Bessel, CA ;
Laubernds, K ;
Rodriguez, NM ;
Baker, RTK .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (06) :1115-1118
[5]  
Boxall DL, 1998, ABSTR PAP AM CHEM S, V216, pU345
[6]  
BOXALL DL, 1998, 1998 FUEL CELL SEM A, P545
[7]  
BOXALL DL, 2001, CHEM MAT, V13
[8]  
Chandler G.K., 1997, PLATIN MET REV, V41, P54
[9]   Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces [J].
Dinh, HN ;
Ren, XM ;
Garzon, FH ;
Zelenay, P ;
Gottesfeld, S .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2000, 491 (1-2) :222-233
[10]   TEMPERATURE-DEPENDENT METHANOL ELECTROOXIDATION ON WELL-CHARACTERIZED PT-RU ALLOYS [J].
GASTEIGER, HA ;
MARKOVIC, N ;
ROSS, PN ;
CAIRNS, EJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (07) :1795-1803