Recent Upgrades of the DIII-D Impurity Granule Injector

被引:6
|
作者
Vorenkamp, M. S. [1 ,2 ,3 ]
Nagy, A. [1 ,3 ]
Bortolon, A. [1 ,3 ]
Lunsford, R. [1 ]
Maingi, R. [1 ]
Mansfield, D. K. [1 ]
Roquemore, A. L. [1 ]
机构
[1] Princeton Plasma Phys Lab, 100 Stellarator Rd,Route 1 North, Princeton, NJ 08543 USA
[2] Univ San Diego, 5998 Alcala Pk, San Diego, CA 92110 USA
[3] Gen Atom DIII D Natl Lab, San Diego, CA 92121 USA
关键词
Lithium; impurity; ELM pacing;
D O I
10.1080/15361055.2017.1335144
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
An impurity granule injector on the DIII-D tokamak (IGI) injects granules into the plasma to trigger Edge Localized Modes (ELMs). Impurities, such as lithium, carbon, and boron, are used. The IGI drops granules (0.3-1.0 mm diameter) from a four chamber segmented storage hopper into a down-tube. The downtube guides the granules into a spinning impeller, rotating at a maximum frequency of 170 hz. The granules' collisions with the impeller propel the granules (maximum velocity 120 m/s) through a drift tube, through an open torus interface valve shield, and into the plasma. This device underwent substantial upgrades to improve its functionality, to minimize the device footprint, and to automate post injection analysis. Upgrades include: (1) a drop-tube positioner to account for impeller/granule collision trajectories; (2) a granule drop monitor using an LED and a photodetector in the drop-tube; (3) a photodiode based granule ablation monitor; (4) DC isolation from the DIII-D vacuum vessel; and (5) an electric motor impeller drive with an integrated rotational speed sensor. These modifications improved the operability and efficiency of the IGI, leading to the successful triggering of ELMs using gasless impurity injection. These recent upgrades are discussed in detail.
引用
收藏
页码:488 / 495
页数:8
相关论文
共 50 条
  • [1] Recent and future upgrades to the DIII-D tokamak
    Scoville, J. T.
    FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) : 651 - 654
  • [2] Recent Results and Planned Upgrades for the DIII-D Tokamak
    Scoville, J. T.
    2009 23RD IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 2009, : 37 - 40
  • [3] System upgrades to the DIII-D facility
    Kellman, A. G.
    FUSION ENGINEERING AND DESIGN, 2007, 82 (5-14) : 535 - 540
  • [4] DIII-D: Recent physics results, implemented and planned hardware upgrades
    Petersen, P. I.
    21st IEEE/NPSS Symposium on Fusion Engineering - SOFE 05, 2006, : 41 - 47
  • [5] Motional stark effect upgrades on DIII-D
    Rice, B.W.
    Nilson, D.G.
    Wroblewski, D.
    Review of Scientific Instruments, 1995, 66 (1 pt 2):
  • [6] RECENT DIII-D RESULTS
    PETERSEN, PI
    FUSION TECHNOLOGY, 1994, 26 (03): : 418 - 426
  • [7] Recent DIII-D results
    Petersen, Peter I.
    Fusion Technology, 1994, 26 (3 pt 2): : 418 - 426
  • [8] Performance History and Upgrades for the DIII-D Gyrotron Complex
    Lohr, J.
    Anderson, J. P.
    Cengher, M.
    Ellis, R. A.
    Gorelov, Y. A.
    Kolemen, E.
    Lambot, T.
    Murakami, D. D.
    Myrabo, L.
    Noraky, S.
    Parkin, K. L.
    Ponce, D.
    Torrezan, A.
    EC18 - 18TH JOINT WORKSHOP ON ELECTRON CYCLOTRON EMISSION AND ELECTRON CYCLOTRON RESONANCE HEATING, 2015, 87
  • [9] MOTIONAL STARK-EFFECT UPGRADES ON DIII-D
    RICE, BW
    NILSON, DG
    WROBLEWSKI, D
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (01): : 373 - 375
  • [10] Performance and Upgrades for the Electron Cyclotron Heating System on DIII-D
    Cengher, Mirela
    Lohr, J.
    Gorelov, Y. A.
    Ellis, R.
    Kolemen, Egemen
    Ponce, D.
    Noraky, S.
    Moeller, C. P.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (07) : 1964 - 1970