Photometric survey, modelling, and scaling of long-period and low-amplitude asteroids

被引:28
|
作者
Marciniak, A. [1 ]
Bartczak, P. [1 ]
Mueller, T. [2 ]
Sanabria, J. J. [3 ]
Ali-Lagoa, V. [2 ]
Antonini, P. [4 ]
Behrend, R. [5 ]
Bernasconi, L. [6 ]
Bronikowska, M. [7 ]
Butkiewicz-Bak, M. [1 ]
Cikota, A. [8 ]
Crippa, R. [9 ]
Ditteon, R. [10 ]
Dudzinski, G. [1 ]
Duffard, R. [11 ]
Dziadura, K. [1 ]
Fauvaud, S. [12 ]
Geier, S. [3 ,13 ]
Hirsch, R. [1 ]
Horbowicz, J. [1 ]
Hren, M. [8 ]
Jerosimic, L.
Kaminski, K. [1 ]
Kankiewicz, P. [14 ]
Konstanciak, I. [1 ]
Korlevic, P. [8 ]
Kosturkiewicz, E. [1 ]
Kudak, V. [15 ,16 ]
Manzini, F.
Morales, N.
Murawiecka, M. [17 ]
Ogloza, W. [18 ]
Oszkiewicz, D. [1 ]
Pilcher, F. [19 ]
Polakis, T. [20 ]
Poncy, R. [21 ]
Santana-Ros, T. [1 ]
Siwak, M. [18 ]
Skiff, B. [22 ]
Sobkowiak, K. [1 ]
Stoss, R.
Zejmo, M. [23 ]
Zukowski, K. [1 ]
机构
[1] Adam Mickiewicz Univ, Astron Observ Inst, Fac Phys, Sloneczna 36, PL-60286 Poznan, Poland
[2] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany
[3] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain
[4] Observ Hauts Patys, F-84410 Bedoin, France
[5] Geneva Observ, CH-1290 Sauverny, Switzerland
[6] Engarouines Observ, F-84570 Mallemort Du Comtat, France
[7] Adam Mickiewicz Univ, Inst Geol, Krygowskiego 12, PL-61606 Poznan, Poland
[8] OAM Mallorca, Cami Observ S-N, Costitx Mallorca 07144, Illes Balears, Spain
[9] Stn Astron Sozzago, I-28060 Sozzago, Italy
[10] Rose Hulman Inst Technol, CM 171 5500 Wabash Ave, Terre Haute, IN 47803 USA
[11] CSIC, Inst Astrofis Andalucia, Dept Sistema Solar, Glorieta Astron S-N, E-18008 Granada, Spain
[12] Observ Bois Bardon, F-16110 Taponnat, France
[13] Gran Telescopio Canarias GRANTECAN, Cuesta San Jose S-N, Brena Baja 38712, La Palma, Spain
[14] Jan Kochanowski Univ, Inst Phys, Astrophys Div, Swietokrzyska 15, PL-25406 Kielce, Poland
[15] Univ PJ Safarik, Inst Phys, Fac Nat Sci, Pk Angelinum 9, Kosice 04001, Slovakia
[16] Uzhgorod Natl Univ, Lab Space Res, Daleka St 2a, UA-88000 Uzhgorod, Ukraine
[17] Univ Namur, Dept Math, NaXys, 8 Rempart Vierge, B-5000 Namur, Belgium
[18] Pedag Univ, Mt Suhora Observ, Podchorazych 2, PL-30084 Krakow, Poland
[19] 4438 Organ Mesa Loop, Las Cruces, NM 88011 USA
[20] Command Module Observ, 121 W Alameda Dr, Tempe, AZ 85282 USA
[21] Rue Ecoles 2, F-34920 Le Cres, France
[22] Lowell Observ, 1400 West Mars Hill Rd, Flagstaff, AZ 86001 USA
[23] Univ Zielona Gora, Kepler Inst Astron, Lubuska 2, PL-65265 Zielona Gora, Poland
基金
欧盟地平线“2020”;
关键词
techniques: photometric - minor planets; asteroids: general; LIGHTCURVE INVERSION; THERMAL PHYSICS; OPTIMIZATION METHODS; SPIN-DOWN; ROTATION; SHAPE; STANDARDS;
D O I
10.1051/0004-6361/201731479
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The available set of spin and shape modelled asteroids is strongly biased against slowly rotating targets and those with low lightcurve amplitudes. This is due to the observing selection effects. As a consequence, the current picture of asteroid spin axis distribution, rotation rates, radiometric properties, or aspects related to the object's internal structure might be affected too. Aims. To counteract these selection effects, we are running a photometric campaign of a large sample of main belt asteroids omitted in most previous studies. Using least chi-squared fitting we determined synodic rotation periods and verified previous determinations. When a dataset for a given target was sufficiently large and varied, we performed spin and shape modelling with two different methods to compare their performance. Methods. We used the convex inversion method and the non-convex SAGE algorithm, applied on the same datasets of dense lightcurves. Both methods search for the lowest deviations between observed and modelled lightcurves, though using different approaches. Unlike convex inversion, the SAGE method allows for the existence of valleys and indentations on the shapes based only on lightcurves. Results. We obtain detailed spin and shape models for the first five targets of our sample: (159) Aemilia, (227) Philosophia, (329) Svea, (478) Tergeste, and (487) Venetia. When compared to stellar occultation chords, our models obtained an absolute size scale and major topographic features of the shape models were also confirmed. When applied to thermophysical modelling (TPM), they provided a very good fit to the infrared data and allowed their size, albedo, and thermal inertia to be determined. Conclusions. Convex and non-convex shape models provide comparable fits to lightcurves. However, some non-convex models fit notably better to stellar occultation chords and to infrared data in sophisticated thermophysical modelling (TPM). In some cases TPM showed strong preference for one of the spin and shape solutions. Also, we confirmed that slowly rotating asteroids tend to have higher-than-average values of thermal inertia, which might be caused by properties of the surface layers underlying the skin depth.
引用
收藏
页数:33
相关论文
empty
未找到相关数据