Analytic and algebraic conditions for bifurcations of homoclinic orbits in reversible systems

被引:0
作者
Yagasaki, Kazuyuki [1 ]
机构
[1] Niigata Univ, Dept Informat Engn, Div Math, Niigata 9502181, Japan
来源
NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS | 2015年 / 64卷
关键词
Homoclinic orbits; bifurcation; differential Galois theory; Melnikov method;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study bifurcations of homoclinic orbits to hyperbolic saddles and saddle-centers in reversible systems analytically by Melnikov-type methods and algebraically by differential Galois theory.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 8 条
  • [1] Blazquez-Sanz D., ANAL ALGEBRAIC CONDI
  • [2] Blazquez-Sanz D., GALOISIAN APPROACH S
  • [4] Knobloch J., 1997, J DYN DIFFER EQU, V9, P427, DOI [10.1007/BF02227489, DOI 10.1007/BF02227489]
  • [5] Morales-Ruiz J.J., 1999, DIFFERENTIAL GALOIS
  • [6] Stable localized vortex solitons
    Towers, I
    Buryak, AV
    Sammut, RA
    Malomed, BA
    [J]. PHYSICAL REVIEW E, 2001, 63 (05): : 556011 - 556014
  • [7] Detection of symmetric homoclinic orbits to saddle-centres in reversible systems
    Yagasaki, K
    Wagenknecht, T
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 214 (02) : 169 - 181
  • [8] Yagasaki K., ANAL ALAGEBRAI UNPUB