Positive solutions of quasilinear elliptic equations

被引:9
作者
Galakhov, EI [1 ]
机构
[1] Univ Rostock, D-2500 Rostock, Germany
关键词
quasilinear elliptic differential equation; Dirichlet problem; radially symmetric function; Sobolev exponent; self-similarity exponent;
D O I
10.1007/s11006-005-0114-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with existence theorems for positive solutions of the Dirichlet problem for quasilinear elliptic differential equation containing a gradient term. Using the shooting method and the a priori estimates for the first zero, we obtain sufficient conditions for the existence of classical positive solutions of the problem in the ball.
引用
收藏
页码:185 / 193
页数:9
相关论文
共 4 条
[1]   SOME BLOWUP RESULTS FOR A NONLINEAR PARABOLIC EQUATION WITH A GRADIENT TERM [J].
CHIPOT, M ;
WEISSLER, FB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (04) :886-907
[2]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[3]  
MITIDIERI E, 1997, ADV DIFFER EQUAT, V2, P319
[4]  
NI WM, 1986, ACCAD NAZ LINCEI CON, V77, P231