Phase structure of fuzzy black holes

被引:3
作者
Digal, S. [1 ]
Govindarajan, T. R. [1 ]
Gupta, Kumar S. [2 ]
Martin, X. [3 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
[2] Saha Inst Nucl Phys, Theory Div, Kolkata 700064, W Bengal, India
[3] Univ Tours, UFR Sci & Tech, LMPT, F-37200 Tours, France
关键词
Non-Commutative Geometry; Models of Quantum Gravity; QUANTUM-FIELD THEORY; SCALAR FIELD; SPACETIME;
D O I
10.1007/JHEP01(2012)027
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Noncommutative deformations of the BTZ black holes are described by noncommutative cylinders. We study the scalar fields in this background. The spectrum is studied analytically and through numerical simulations we establish the existence of novel 'stripe phases'. These are different from stripes on Moyal spaces and stable due to topological obstruction.
引用
收藏
页数:19
相关论文
共 42 条
[1]   Large N field theories, string theory and gravity [J].
Aharony, O ;
Gubser, SS ;
Maldacena, J ;
Ooguri, H ;
Oz, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 323 (3-4) :183-386
[2]   Stripes from (non-commutative) stars [J].
Ambjorn, J ;
Catterall, S .
PHYSICS LETTERS B, 2002, 549 (1-2) :253-259
[3]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[4]   Noncommutative two-dimensional gravities [J].
Balachandran, A. P. ;
Govindarajan, T. R. ;
Gupta, Kumar S. ;
Kurkcuoglu, Seckin .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (20) :5799-5810
[5]   The fermion doubling problem and noncommutative geometry [J].
Balachandran, AP ;
Govindarajan, TR ;
Ydri, B .
MODERN PHYSICS LETTERS A, 2000, 15 (19) :1279-1286
[6]  
Balachandran AP, 2004, J HIGH ENERGY PHYS
[7]  
Balachandran AP., 2007, Lectures on Fuzzy and Fuzzy SUSY Physics, DOI [10.1142/6346, DOI 10.1142/6346]
[8]  
BALACHANDRAN AP, 2005, JHEP, V12, P2
[9]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[10]   GEOMETRY OF THE 2+1 BLACK-HOLE [J].
BANADOS, M ;
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW D, 1993, 48 (04) :1506-1525