Epileptic Seizure Detection Based on Variational Mode Decomposition and Deep Forest Using EEG Signals

被引:14
|
作者
Liu, Xiang [1 ]
Wang, Juan [1 ]
Shang, Junliang [1 ]
Liu, Jinxing [1 ]
Dai, Lingyun [1 ]
Yuan, Shasha [1 ]
机构
[1] Qufu Normal Univ, Sch Comp Sci, Rizhao 276826, Peoples R China
基金
中国国家自然科学基金;
关键词
electroencephalography; seizure detection; variational modal decomposition; log-Euclidean covariance matrix; deep forest; STOCKWELL TRANSFORM; CLASSIFICATION; ALGORITHM; TIME;
D O I
10.3390/brainsci12101275
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Electroencephalography (EEG) records the electrical activity of the brain, which is an important tool for the automatic detection of epileptic seizures. It is certainly a very heavy burden to only recognize EEG epilepsy manually, so the method of computer-assisted treatment is of great importance. This paper presents a seizure detection algorithm based on variational modal decomposition (VMD) and a deep forest (DF) model. Variational modal decomposition is performed on EEG recordings, and the first three variational modal functions (VMFs) are selected to construct the time-frequency distribution of the EEG signals. Then, the log-Euclidean covariance matrix (LECM) is computed to represent the EEG properties and form EEG features. The deep forest model is applied to complete the EEG signal classification, which is a non-neural network deep model with a cascade structure that performs feature learning through the forest. In addition, to improve the classification accuracy, postprocessing techniques are performed to generate the discriminant results by moving average filtering and adaptive collar expansion. The algorithm was evaluated on the Bonn EEG dataset and the Freiburg long-term EEG dataset, and the former achieved a sensitivity and specificity of 99.32% and 99.31%, respectively. The mean sensitivity and specificity of this method for the 21 patients in the Freiburg dataset were 95.2% and 98.56%, respectively, with a false detection rate of 0.36/h. These results demonstrate the superior performance advantage of our algorithm and indicate its great research potential in epilepsy detection.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Feature Selection with Deep Belief Network for Epileptic Seizure Detection on EEG Signals
    Cherukuvada, Srikanth
    Kayalvizhi, R.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (02): : 4101 - 4118
  • [32] Deep learning based epileptic seizure detection with EEG data
    Poorani, S.
    Balasubramanie, P.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023,
  • [33] Evidence Theory-based Approach for Epileptic Seizure Detection using EEG Signals
    Mohamed, Abduljalil
    Shaban, Khaled Bashir
    Mohamed, Amr
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 79 - 85
  • [34] Epileptic seizure detection using EEG signals and extreme gradient boosting
    Vanabelle, Paul
    De Handschutter, Pierre
    El Tahry, Riem
    Benjelloun, Mohammed
    Boukhebouze, Mohamed
    JOURNAL OF BIOMEDICAL RESEARCH, 2020, 34 (03): : 228 - 239
  • [35] Epileptic seizure detection using EEG signals and extreme gradient boosting
    Paul Vanabelle
    Pierre De Handschutter
    Ri?m El Tahry
    Mohammed Benjelloun
    Mohamed Boukhebouze
    TheJournalofBiomedicalResearch, 2020, 34 (03) : 228 - 239
  • [36] Automated Machine Learning for Epileptic Seizure Detection Based on EEG Signals
    Liu, Jian
    Du, Yipeng
    Wang, Xiang
    Yue, Wuguang
    Feng, Jim
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 1995 - 2011
  • [37] A Surrogate Channel Based Analysis of EEG Signals for Detection of Epileptic Seizure
    Awan, Saqib Ejaz
    Khawaja, Sajid Gul
    Khan, Muazzam A.
    Akram, M. Usman
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2016, : 384 - 388
  • [38] Analysis of epileptic EEG signals by using dynamic mode decomposition and spectrum
    Cura, Ozlem Karabiber
    Akan, Aydin
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (01) : 28 - 44
  • [39] Detection of Epileptic Seizure EEG Signal Using Multiscale Entropies and Complete Ensemble Empirical Mode Decomposition
    Singh, Gurwinder
    Kaur, Manpreet
    Singh, Birmohan
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 116 (01) : 845 - 864
  • [40] Detection of Epileptic Seizure EEG Signal Using Multiscale Entropies and Complete Ensemble Empirical Mode Decomposition
    Gurwinder Singh
    Manpreet Kaur
    Birmohan Singh
    Wireless Personal Communications, 2021, 116 : 845 - 864