Microstructure synthesis using style-based generative adversarial networks

被引:55
|
作者
Fokina, Daria [1 ]
Muravleva, Ekaterina [1 ]
Ovchinnikov, George [1 ]
Oseledets, Ivan [1 ,2 ]
机构
[1] Skolkovo Inst Sci & Technol, Bolshoy Blvd 30,Bld 1, Moscow 143025, Russia
[2] Russian Acad Sci, Inst Numer Math, Gubkina St 8, Moscow 119333, Russia
关键词
RECONSTRUCTION; MEDIA;
D O I
10.1103/PhysRevE.101.043308
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work considers the usage of StyleGAN architecture for the task of microstructure synthesis. The task is the following: Given number of samples of structure we try to generate similar samples at the same time preserving its properties. Since the considered architecture is not able to produce samples of sizes larger than the training images, we propose to use image quilting to merge fixed-sized samples. One of the key features of the considered architecture is that it uses multiple image resolutions. We also investigate the necessity of such an approach.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Photoacoustic image synthesis with generative adversarial networks
    Schellenberg, Melanie
    Groehl, Janek
    Dreher, Kris K.
    Noelke, Jan-Hinrich
    Holzwarth, Niklas
    Tizabi, Minu D.
    Seitel, Alexander
    Maier-Hein, Lena
    PHOTOACOUSTICS, 2022, 28
  • [2] Ultrasonic imaging using conditional generative adversarial networks
    Molinier, Nathan
    Painchaud-April, Guillaume
    Le Duff, Alain
    Toews, Matthew
    Belanger, Pierre
    ULTRASONICS, 2023, 133
  • [3] Generative Adversarial Networks based on optimal transport: a survey
    Kamsu-Foguem, Bernard
    Msouobu Gueuwou, Shester Landry
    Kounta, Cheick Abdoul Kadir A.
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (07) : 6723 - 6773
  • [4] Synthetic Fingerprint Generation Using Generative Adversarial Networks: A Review
    Dhaneshwar, Ritika
    Taya, Arnav
    Kaur, Mandeep
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 375 - 387
  • [5] A mesoscale eddy reconstruction method based on generative adversarial networks
    Ma, Xiaodong
    Zhang, Lei
    Xu, Weishuai
    Li, Maolin
    Zhou, Xingyu
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [6] Generative adversarial networks based regularized image reconstruction for PET
    Xie, Zhaoheng
    Baikejiang, Reheman
    Gong, Kuang
    Zhang, Xuezhu
    Qi, Jinyi
    15TH INTERNATIONAL MEETING ON FULLY THREE-DIMENSIONAL IMAGE RECONSTRUCTION IN RADIOLOGY AND NUCLEAR MEDICINE, 2019, 11072
  • [7] Positron Image Super-Resolution Using Generative Adversarial Networks
    Xiong, Fang
    Liu, Jian
    Zhao, Min
    Yao, Min
    Guo, Ruipeng
    IEEE ACCESS, 2021, 9 : 121329 - 121343
  • [8] Parametrization of Stochastic Inputs Using Generative Adversarial Networks With Application in Geology
    Chan, Shing
    Elsheikh, Ahmed H.
    FRONTIERS IN WATER, 2020, 2
  • [9] Digital Core Modeling Based on Pretrained Generative Adversarial Neural Networks
    Zhang, Qing
    Wang, Benqiang
    Liang, Xusheng
    Li, Yizhen
    He, Feng
    Hao, Yuexiang
    GEOFLUIDS, 2022, 2022
  • [10] Deep learning-based imputation framework for bridge health monitoring using generative adversarial networks
    Saha, Sumit
    Katyal, Krishn
    Somala, Surendra Nadh
    KNOWLEDGE-BASED SYSTEMS, 2025, 311