Obstructive sleep apnea predicts 10-year cardiovascular disease-related mortality in the Sleep Heart Health Study: a machine learning approach

被引:11
作者
Li, Ao [1 ,2 ]
Roveda, Janet M. [1 ,2 ,3 ]
Powers, Linda S. [1 ,2 ,3 ]
Quan, Stuart F. [4 ,5 ,6 ]
机构
[1] Univ Arizona, Coll Engn, Dept Elect & Comp Engn, Tucson, AZ 85719 USA
[2] Univ Arizona, BIO5 Inst, Tucson, AZ 85719 USA
[3] Univ Arizona, Coll Engn, Dept Biomed Engn, Tucson, AZ 85719 USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Sleep & Circadian Disorders, Boston, MA 02115 USA
[5] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurol, Div Sleep & Circadian Disorders, Boston, MA 02115 USA
[6] Univ Arizona, Coll Med, Asthma & Airway Dis Res Ctr, Tucson, AZ 85719 USA
来源
JOURNAL OF CLINICAL SLEEP MEDICINE | 2022年 / 18卷 / 02期
关键词
apnea-hypopnea index; cardiovascular mortality; machine learning; obstructive sleep apnea; RISK; POPULATION; AREAS; CARE;
D O I
10.5664/jcsm.9630
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Study Objectives: Obstructive sleep apnea (OSA) is considered to be an important risk factor for the development of cardiovascular disease (CVD). This study aimed to develop and evaluate a machine learning approach with a set of features for assessing the 10-year CVD mortality risk of the OSA population. Methods: This study included 2,464 patients with OSA who met study inclusion criteria and were selected from the Sleep Heart Health Study. We evaluated the importance of potential features by mutual information. The top 9 features were selected to develop a random forest model. Results: We evaluated the model performance on a test set (n = 493) using the area under the receiver operating curve with 95% confidence interval and confusion matrix. A random forest model awarded the highest area under the receiver operating curve of 0.84 (95% confidence interval: 0.78-0.89). The specificity and sensitivity were 73.94% and 81.82%, respectively. Sixty-three years old was a threshold for increased risk of 10-year CVD mortality. Persons with severe OSA had higher risk than those with mild OSA. Conclusions: This study demonstrated that a random forest model can provide a quick assessment of the risk of 10-year CVD mortality. Our model may be more informative for patients with OSA in determining their future CVD mortality risk.
引用
收藏
页码:497 / 504
页数:8
相关论文
共 50 条
[31]   Severe obstructive sleep apnea increases mortality in patients with ischemic heart disease and myocardial injury [J].
Won, Christine H. ;
Chun, Hyung J. ;
Chandra, Suparna M. ;
Sarinas, Priscilla S. ;
Chitkara, Rajinder K. ;
Heidenreich, Paul A. .
SLEEP AND BREATHING, 2013, 17 (01) :85-91
[32]   Screening of obstructive sleep apnea and diabetes mellitus -related biomarkers based on integrated bioinformatics analysis and machine learning [J].
Yang, Jianan ;
Han, Yujie ;
Diao, Xianping ;
Yuan, Baochang ;
Gu, Jun .
SLEEP AND BREATHING, 2025, 29 (01)
[33]   Machine Learning Identification of Obstructive Sleep Apnea Severity through the Patient Clinical Features: A Retrospective Study [J].
Maniaci, Antonino ;
Riela, Paolo Marco ;
Iannella, Giannicola ;
Lechien, Jerome Rene ;
La Mantia, Ignazio ;
De Vincentiis, Marco ;
Cammaroto, Giovanni ;
Calvo-Henriquez, Christian ;
Di Luca, Milena ;
Chiesa Estomba, Carlos ;
Saibene, Alberto Maria ;
Pollicina, Isabella ;
Stilo, Giovanna ;
Di Mauro, Paola ;
Cannavicci, Angelo ;
Lugo, Rodolfo ;
Magliulo, Giuseppe ;
Greco, Antonio ;
Pace, Annalisa ;
Meccariello, Giuseppe ;
Cocuzza, Salvatore ;
Vicini, Claudio .
LIFE-BASEL, 2023, 13 (03)
[34]   Automatic sleep staging in obstructive sleep apnea patients using photoplethysmography, heart rate variability signal and machine learning techniques [J].
Ucar, Muhammed Kursad ;
Bozkurt, Mehmet Recep ;
Bilgin, Cahit ;
Polat, Kemal .
NEURAL COMPUTING & APPLICATIONS, 2018, 29 (08) :1-16
[35]   Analyzing the Prevalence of Depression and Its Influencing Factors in Elderly Patients With Obstructive Sleep Apnea: A Machine Learning Approach [J].
Qin, Shuhong ;
Zheng, Zhanhang ;
Li, Ruilin ;
Wu, Chenxingzi ;
Wang, Wenjuan .
ENT-EAR NOSE & THROAT JOURNAL, 2024,
[36]   Dental side effects of long-term obstructive sleep apnea therapy: a 10-year follow-up study [J].
Venema, Julia Anne Margarethe Uniken ;
Doff, Michiel H. J. ;
Joffe-Sokolova, Dilyana S. ;
Wijkstra, Peter J. ;
van der Hoeven, Johannes H. ;
Stegenga, Boudewijn ;
Hoekema, Aarnoud .
CLINICAL ORAL INVESTIGATIONS, 2020, 24 (09) :3069-3076
[37]   Dental side effects of long-term obstructive sleep apnea therapy: a 10-year follow-up study [J].
Julia Anne Margarethe Uniken Venema ;
Michiel H. J. Doff ;
Dilyana S. Joffe-Sokolova ;
Peter J. Wijkstra ;
Johannes H. van der Hoeven ;
Boudewijn Stegenga ;
Aarnoud Hoekema .
Clinical Oral Investigations, 2020, 24 :3069-3076
[38]   The association between chemosensitivity and the 10-year risk of type 2 diabetes in male patients with obstructive sleep apnea [J].
Wang, Lixia ;
Dai, Lu ;
Wang, Xiaona ;
Guo, Junwei ;
Huang, Rong ;
Xiao, Yi .
SLEEP AND BREATHING, 2025, 29 (01)
[39]   Heterogeneous Effects of Continuous Positive Airway Pressure in Non-Sleepy Obstructive Sleep Apnea on Cardiovascular Disease Outcomes: Post Hoc Machine Learning Analysis of the ISAACC Trial (ECSACT Study) [J].
Cohen, Oren ;
Sanchez-de-la-Torre, Manuel ;
Al-Taie, Zainab ;
Khan, Samira ;
Kundel, Vaishnavi ;
Kovacic, Jason C. ;
Gracia-Lavedan, Esther ;
De Batlle, Jordi ;
Nadkarni, Girish ;
Barbe, Ferran ;
Suarez-Farinas, Mayte ;
Shah, Neomi A. .
ANNALS OF THE AMERICAN THORACIC SOCIETY, 2024, 21 (07) :1074-1084
[40]   An Experimental Review on Obstructive Sleep Apnea Detection Based on Heart Rate Variability and Machine Learning Techniques [J].
Padovano, Daniele ;
Martinez-Rodrigo, Arturo ;
Manuel Pastor, Jose ;
Joaquin Rieta, Jose ;
Alcaraz, Raul .
2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,