Micapipe: A pipeline for multimodal neuroimaging and connectome analysis

被引:45
作者
Cruces, Raul R. [1 ]
Royer, Jessica [1 ,2 ]
Herholz, Peer [3 ]
Lariviere, Sara [1 ]
De Wael, Reinder Vos [1 ]
Paquola, Casey [1 ,9 ]
Benkarim, Oualid [1 ]
Park, Bo-yong [1 ,4 ,5 ]
Degre-Pelletier, Janie
Nelson, Mark C. [7 ]
DeKraker, Jordan [1 ]
Leppert, Ilana R. [7 ]
Tardif, Christine [7 ]
Poline, Jean -Baptiste [6 ,7 ]
Concha, Luis [8 ]
Bernhardt, Boris C. [1 ]
机构
[1] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Multimodal Imaging & Connectome Anal Lab, Montreal, PQ, Canada
[2] McGill Univ, Montreal Neurol Inst, Analyt Neurophysiol Lab, Montreal, PQ, Canada
[3] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, NeuroDataSci ORIGAMI lab, Montreal, PQ, Canada
[4] Inha Univ, Dept Data Sci, Incheon, South Korea
[5] Inst Basic Sci, Ctr Neurosci Imaging Res, Suwon, South Korea
[6] Univ Quebec Montreal, Dept Psychol, Labo IDEA, Montreal, PQ, Canada
[7] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[8] Univ Nacl Autonoma Mexico, Inst Neurobiol, Campus Juriquilla, Juriquilla, Mexico
[9] Forschungszentrum Julich, Inst Neurosci & Med INM 1, Julich, Germany
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
Multimoda; MRI; Connectome; Neuroimaging; Multiscale; BIDS; HUMAN CEREBRAL-CORTEX; WHITE-MATTER; FUNCTIONAL CONNECTIVITY; SIGNAL REGRESSION; DIFFUSION TENSOR; BRAIN; FRAMEWORK; NETWORK; PARCELLATION; TRACTOGRAPHY;
D O I
10.1016/j.neuroimage.2022.119612
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate infor-mation across modalities and to consolidate findings across different spatial scales. Here, we present micapipe, an open processing pipeline for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can gen-erate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. The above matrices can be automatically generated across established 18 cortical parcellations (100-1000 parcels), in addition to subcortical and cerebellar parcellations, allowing researchers to replicate findings easily across different spatial scales. Results are represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. mi-capipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe , documented at https://micapipe.readthedocs.io/ , and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/ . We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, function, cand connectivity.
引用
收藏
页数:15
相关论文
共 128 条
[1]   The quest for identifiability in human functional connectomes [J].
Amico, Enrico ;
Goni, Joaquin .
SCIENTIFIC REPORTS, 2018, 8
[2]   Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images [J].
Andersson, Jesper L. R. ;
Graham, Mark S. ;
Zsoldos, Eniko ;
Sotiropoulos, Stamatios N. .
NEUROIMAGE, 2016, 141 :556-572
[3]   An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging [J].
Andersson, Jesper L. R. ;
Sotiropoulos, Stamatios N. .
NEUROIMAGE, 2016, 125 :1063-1078
[4]   How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging [J].
Andersson, JLR ;
Skare, S ;
Ashburner, J .
NEUROIMAGE, 2003, 20 (02) :870-888
[5]  
Angeles-Valdez Diego, 2021, Zenodo, DOI 10.5281/ZENODO.5123331
[6]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[7]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[8]   Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction [J].
Bastiani, Matteo ;
Cottaar, Michiel ;
Fitzgibbon, Sean P. ;
Suri, Sana ;
Alfaro-Almagro, Fidel ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Andersson, Jesper L. R. .
NEUROIMAGE, 2019, 184 :801-812
[9]   A Riemannian approach to predicting brain function from the structural connectome [J].
Benkarim, Oualid ;
Paquola, Casey ;
Park, Bo-yong ;
Royer, Jessica ;
Rodriguez-Cruces, Raul ;
Wael, Reinder Vos de ;
Misic, Bratislav ;
Piella, Gemma ;
Bernhardt, Boris C. .
NEUROIMAGE, 2022, 257
[10]   Preferential susceptibility of limbic cortices to microstructural damage in temporal lobe epilepsy: A quantitative T1 mapping study [J].
Bernhardt, Boris C. ;
Fadaie, Fatemeh ;
de Wael, Reinder Vos ;
Hong, Seok-Jun ;
Liu, Min ;
Guiot, Marie C. ;
Rudko, David A. ;
Bernasconi, Andrea ;
Bernasconi, Neda .
NEUROIMAGE, 2018, 182 :294-303