共 50 条
High-efficiency, anode-free lithium-metal batteries with a close-packed homogeneous lithium morphology
被引:73
|作者:
Su, Laisuo
[1
,2
]
Charalambous, Harry
[3
]
Cui, Zehao
[1
,2
]
Manthiram, Arumugam
[1
,2
]
机构:
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[3] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词:
SOLID-ELECTROLYTE INTERPHASES;
LI;
INTERFACES;
ION;
D O I:
10.1039/d1ee03103a
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Anode-free lithium-metal batteries (LMBs) are ideal candidates for high-capacity energy storage as they eliminate the need for a conventional graphite electrode or excess lithium-metal anode. Current anode-free LMBs suffer from low Coulombic efficiency (CE) due to poor lithium stripping efficiency. Advanced electrolyte development is a promising route to maximize lithium plating and stripping CE and minimize capacity fade. However, a poor understanding of the mechanisms by which advanced electrolytes improve performance hampers progress in the practical development of anode-free LMBs. Here, we use synchrotron techniques and other tools to analyze the influence of three commercially available electrolytes on the composition, heterogeneity, kinetics, morphology, and electrochemistry of anode-free LMBs. Advanced electrolytes improve the electrochemical performance of anode-free LMBs by forming much denser and better-packed Li morphologies on a Cu current collector than on the conventional electrolyte. Li plates uniformly over the electrode area with the advanced electrolytes rather than in a few active sites. Inactive crystalline Li with heterogeneous distribution dominates the capacity degradation of anode-free cells, especially with the conventional electrolyte, indicating that reducing the amount of "dead" crystalline Li will significantly improve the cycling stability of anode-free cells. The understanding of the Li plating and stripping process obtained from this work will accelerate the development of anode-free LMBs with high efficiency.
引用
收藏
页码:843 / 854
页数:12
相关论文