Triple-Band Perfect Light Absorber Based on Hybrid Metasurface for Sensing Application

被引:68
作者
Cheng, Yongzhi [1 ]
Chen, Fu [1 ]
Luo, Hui [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
来源
NANOSCALE RESEARCH LETTERS | 2020年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Visible; Hybrid metasurface; Perfect light absorber; Silicon cross nanostructure; INFRARED ABSORBER; METAMATERIAL; ABSORPTION; METAL; POLARIZATION; SENSOR;
D O I
10.1186/s11671-020-03332-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A simple design of triple-band perfect light absorber (PLA) based on hybrid metasurface in visible region has been presented in this work, which turns out to be applicable for refractive index (RI) sensing. Distinct from previous designs, the proposed hybrid metasurface for visible PLA is only consisted of periodic silicon cross nanostructure arrays and gold substrate. The periodic silicon cross arrays deposited on the gold substrate contribute to excite the guided modes under the normal incident light illumination. According to the simulation results, it can be found that three perfect absorption peaks of 98.1%, 98.7%, and 99.6% which are located at 402.5 THz, 429.5 THz, and 471.5 THz, respectively, have been clearly observed in PLA. This triple-band perfect absorption effect could be attributed to the intrinsic loss of silicon material originated from the guided mode excitations caused by the standing waves of different orders. It has been confirmed that the perfect absorption properties of the PLA can be easily regulated by changing the geometric parameters of the unit-cell nanostructure. Furthermore, the designed PLA served as a RI sensor can achieve sensitivity of about 25.3, 41.3, and 31.9 THz /refractive index unit (RIU). It can be believed that the proposed design of PLA for RI sensing would provide great potential applications in sensing, detecting, the enhanced visible spectroscopy, etc.
引用
收藏
页数:10
相关论文
共 63 条
[1]   Silicon detector results from the first five-tower run of CDMS II [J].
Agnese, R. ;
Ahmed, Z. ;
Anderson, A. J. ;
Arrenberg, S. ;
Balakishiyeva, D. ;
Thakur, R. Basu ;
Bauer, D. A. ;
Borgland, A. ;
Brandt, D. ;
Brink, P. L. ;
Bruch, T. ;
Bunker, R. ;
Cabrera, B. ;
Caldwell, D. O. ;
Cerdeno, D. G. ;
Chagani, H. ;
Cooley, J. ;
Cornell, B. ;
Crewdson, C. H. ;
Cushman, P. ;
Daal, M. ;
Dejongh, F. ;
Di Tefano, P. C. F. ;
do Couto e Silva, E. ;
Doughty, T. ;
Esteban, L. ;
Fallows, S. ;
Figueroa-Feliciano, E. ;
Filippini, J. ;
Fox, J. ;
Fritts, M. ;
Godfrey, G. L. ;
Golwala, S. R. ;
Hall, J. ;
Harris, R. H. ;
Hertel, S. A. ;
Hofer, T. ;
Holmgren, D. ;
Hsu, L. ;
Huber, M. E. ;
Jastram, A. ;
Kamaev, O. ;
Kara, B. ;
Kelsey, M. H. ;
Kennedy, A. ;
Kim, P. ;
Kiveni, M. ;
Koch, K. ;
Kos, M. ;
Leman, S. W. .
PHYSICAL REVIEW D, 2013, 88 (03)
[2]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[3]  
Arbabi A, 2015, NAT NANOTECHNOL, V10, P937, DOI [10.1038/nnano.2015.186, 10.1038/NNANO.2015.186]
[4]   A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism [J].
Bhattarai, Khagendra ;
Ku, Zahyun ;
Silva, Sinhara ;
Jeon, Jiyeon ;
Kim, Jun Oh ;
Lee, Sang Jun ;
Urbas, Augustine ;
Zhou, Jiangfeng .
ADVANCED OPTICAL MATERIALS, 2015, 3 (12) :1779-1786
[5]   General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators [J].
Bozhevolnyi, Sergey I. ;
Sondergaard, Thomas .
OPTICS EXPRESS, 2007, 15 (17) :10869-10877
[6]   High Quality Factor, High Sensitivity Metamaterial Graphene-Perfect Absorber Based on Critical Coupling Theory and Impedance Matching [J].
Cen, Chunlian ;
Chen, Zeqiang ;
Xu, Danyang ;
Jiang, Liying ;
Chen, Xifang ;
Yi, Zao ;
Wu, Pinghui ;
Li, Gongfa ;
Yi, Yougen .
NANOMATERIALS, 2020, 10 (01)
[7]   A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene [J].
Chen, Fu ;
Cheng, Yongzhi ;
Luo, Hui .
MATERIALS, 2020, 13 (04)
[8]   Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial [J].
Chen, Lingling ;
Song, Zhengyong .
OPTICS EXPRESS, 2020, 28 (05) :6565-6571
[9]   Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers [J].
Cheng, Fei ;
Yang, Xiaodong ;
Gao, Jie .
OPTICS LETTERS, 2014, 39 (11) :3185-3188
[10]   Broadband plasmonic absorber based on all silicon nanostructure resonators in visible region [J].
Cheng, Yongzhi ;
Du, Chaoyu .
OPTICAL MATERIALS, 2019, 98