DFT study of hydrogen production from formic acid decomposition on Pd-Au alloy nanoclusters

被引:49
作者
Liu, D. [1 ]
Gao, Z. Y. [1 ]
Wang, X. C. [1 ]
Zeng, J. [1 ]
Li, Y. M. [1 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
关键词
Catalysis; Formic acid decomposition; Hydrogen production; Pd-Au alloy; DFT simulations; CATALYTIC-PROPERTIES; REACTION PATHWAYS; PALLADIUM; GOLD; GENERATION; SURFACE; H2O2; DEHYDROGENATION; NANOPARTICLES; SELECTIVITY;
D O I
10.1016/j.apsusc.2017.07.165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, it has been reported that the hydrogen production rate of formic acid decomposition can be significantly increased using Pd-Au binary alloy nano-catalysts [Wang et al. J. Mater. Chem. A 1 (2013) 12721-12725]. To explain the reaction mechanism of this alloy catalysis method, formic acid decomposition reactions on pure Pd and Pd-Au alloy nanoclusters are studied via density functional theory simulations. The simulation results indicate that the addition of inert element Au would not influence formic acid decomposition on Pd surface sites of Pd-Au alloy nanoclusters. On the other hand, the existence of Au surface sites brings relative weak hydrogen atom adsorption. On Pd-Au alloy nanoclusters, the dissociated hydrogen atoms from formic acid are easier to combine as hydrogen molecules than that on pure Pd clusters. Via the synergetic effect between Pd and Au, both formic acid decomposition and hydrogen production are events with large probability, which eventually results in high hydrogen production rate. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:194 / 205
页数:12
相关论文
共 49 条
[11]   Atomic Structure of Au-Pd Bimetallic Alloyed Nanoparticles [J].
Ding, Yong ;
Fan, Fengru ;
Tian, Zhongqun ;
Wang, Zhong Lin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (35) :12480-12486
[12]   H2 dissociative adsorption on Pd(111) [J].
Dong, W ;
Hafner, J .
PHYSICAL REVIEW B, 1997, 56 (23) :15396-15403
[13]   Direct Synthesis of H2O2 from H2 and O2 over Gold, Palladium, and Gold-Palladium Catalysts Supported on Acid-Pretreated TiO2 [J].
Edwards, Jennifer K. ;
Ntainjua N, Edwin ;
Carley, Albert F. ;
Herzing, Andrew A. ;
Kiely, Christopher J. ;
Hutchings, Graham J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (45) :8512-8515
[14]   Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process [J].
Edwards, Jennifer K. ;
Solsona, Benjamin ;
N, Edwin Ntainjua ;
Carley, Albert F. ;
Herzing, Andrew A. ;
Kiely, Christopher J. ;
Hutchings, Graham J. .
SCIENCE, 2009, 323 (5917) :1037-1041
[15]   Relativistic effects in homogeneous gold catalysis [J].
Gorin, David J. ;
Toste, F. Dean .
NATURE, 2007, 446 (7134) :395-403
[16]   Synergistic Catalysis of Metal-Organic Framework-Immobilized Au-Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage [J].
Gu, Xiaojun ;
Lu, Zhang-Hui ;
Jiang, Hai-Long ;
Akita, Tomoki ;
Xu, Qiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (31) :11822-11825
[17]   SYNCHRONOUS-TRANSIT METHOD FOR DETERMINING REACTION PATHWAYS AND LOCATING MOLECULAR TRANSITION-STATES [J].
HALGREN, TA ;
LIPSCOMB, WN .
CHEMICAL PHYSICS LETTERS, 1977, 49 (02) :225-232
[18]  
Hammer B, 2000, ADV CATAL, V45, P71
[19]   Trends in Formic Acid Decomposition on Model Transition Metal Surfaces: A Density Functional Theory study [J].
Herron, Jeffrey A. ;
Scaranto, Jessica ;
Ferrin, Peter ;
Li, Sha ;
Mavrikakis, Manos .
ACS CATALYSIS, 2014, 4 (12) :4434-4445
[20]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919