DFT study of hydrogen production from formic acid decomposition on Pd-Au alloy nanoclusters

被引:49
|
作者
Liu, D. [1 ]
Gao, Z. Y. [1 ]
Wang, X. C. [1 ]
Zeng, J. [1 ]
Li, Y. M. [1 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
关键词
Catalysis; Formic acid decomposition; Hydrogen production; Pd-Au alloy; DFT simulations; CATALYTIC-PROPERTIES; REACTION PATHWAYS; PALLADIUM; GOLD; GENERATION; SURFACE; H2O2; DEHYDROGENATION; NANOPARTICLES; SELECTIVITY;
D O I
10.1016/j.apsusc.2017.07.165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, it has been reported that the hydrogen production rate of formic acid decomposition can be significantly increased using Pd-Au binary alloy nano-catalysts [Wang et al. J. Mater. Chem. A 1 (2013) 12721-12725]. To explain the reaction mechanism of this alloy catalysis method, formic acid decomposition reactions on pure Pd and Pd-Au alloy nanoclusters are studied via density functional theory simulations. The simulation results indicate that the addition of inert element Au would not influence formic acid decomposition on Pd surface sites of Pd-Au alloy nanoclusters. On the other hand, the existence of Au surface sites brings relative weak hydrogen atom adsorption. On Pd-Au alloy nanoclusters, the dissociated hydrogen atoms from formic acid are easier to combine as hydrogen molecules than that on pure Pd clusters. Via the synergetic effect between Pd and Au, both formic acid decomposition and hydrogen production are events with large probability, which eventually results in high hydrogen production rate. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:194 / 205
页数:12
相关论文
共 50 条
  • [1] Hydrogen from formic acid decomposition over Pd and Au catalysts
    Bulushev, Dmitri A.
    Beloshapkin, Sergey
    Ross, Julian R. H.
    CATALYSIS TODAY, 2010, 154 (1-2) : 7 - 12
  • [2] Cellulose nanocrystals supported ternary alloy nanoclusters catalysts for efficient hydrogen production from formic acid
    Chen, Kuangyin
    Liang, Yanqiu
    Hu, Zhiwei
    Shen, Jianhua
    MOLECULAR CATALYSIS, 2024, 553
  • [3] Investigation of Size Sensitivity in the Hydrogen Production from Formic Acid over Carbon-Supported Pd Nanoparticles
    Navlani-Garcia, Miriam
    Mori, Kohsuke
    Nozaki, Ai
    Kuwahara, Yasutaka
    Yamashita, Hiromi
    CHEMISTRYSELECT, 2016, 1 (09): : 1879 - 1886
  • [4] Superior activity of Pd nanoparticles confined in carbon nanotubes for hydrogen production from formic acid decomposition at ambient temperature
    Ding, Tian-Yi
    Zhao, Zhi-Gang
    Ran, Mao-Fei
    Yang, Yao-Yue
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 538 : 474 - 480
  • [5] Study of Pd-Au/MWCNTs formic acid electrooxidation catalysts
    Mikolajczuk, Anna
    Borodzinski, Andrzej
    Stobinski, Leszek
    Kedzierzawski, Piotr
    Lesiak, Beata
    Laszlo Koever
    Jozsef Toth
    Lin, Hong-Ming
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (11-12): : 2717 - 2721
  • [6] A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium-Palladium Nanoparticles
    Alshammari, Hamed M.
    Alotaibi, Mohammad Hayal
    Aldosari, Obaid F.
    Alsolami, Abdulellah S.
    Alotaibi, Nuha A.
    Alzahrani, Yahya A.
    Alhumaimess, Mosaed S.
    Alotaibi, Raja L.
    El-Hiti, Gamal A.
    MATERIALS, 2021, 14 (12)
  • [7] Single Isolated Pd2+ Cations Supported on N-Doped Carbon as Active Sites for Hydrogen Production from Formic Acid Decomposition
    Bulushev, Dmitri A.
    Zacharska, Monika
    Shlyakhova, Elena V.
    Chuvilin, Audrey L.
    Guo, Yina
    Beloshapkin, Sergey
    Okotrub, Alexander V.
    Bulusheva, Lyubov G.
    ACS CATALYSIS, 2016, 6 (02): : 681 - 691
  • [8] Hydrogen Production via Efficient Formic Acid Decomposition: Engineering the Surface Structure of Pd-Based Alloy Catalysts by Design
    Yang, Yang
    Xu, Haoxiang
    Cao, Dapeng
    Zeng, Xiao Cheng
    Cheng, Daojian
    ACS CATALYSIS, 2019, 9 (01): : 781 - 790
  • [9] Agglomerated Pd Catalysts and Their Applications in Hydrogen Production from Formic Acid Decomposition at Room Temperature
    Liu Jun
    Lan Lixin
    Wu Chao
    Li Rong
    Liu Xuanyan
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2016, 32 (02) : 272 - 277
  • [10] Suppression of hysteresis in absorption of hydrogen by a Pd-Au alloy
    Mamatkulov, Mikhail
    Zhdanov, Vladimir P.
    PHYSICAL REVIEW E, 2020, 101 (04)