Deep Learning in Neuroimaging: Promises and challenges

被引:37
|
作者
Yan, Weizheng [1 ]
Qu, Gang [2 ]
Hu, Wenxing [2 ]
Abrol, Anees [1 ]
Cai, Biao [2 ]
Qiao, Chen [3 ,4 ,5 ,6 ]
Plis, Sergey M. [7 ,8 ]
Wang, Yu-Ping [9 ,10 ]
Sui, Jing [11 ,12 ]
Calhoun, Vince D. [13 ]
机构
[1] Emory Univ, Georgia State Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Georgia Inst Technol, Atlanta, GA 30303 USA
[2] Tulane Univ, Biomed Engn, New Orleans, LA 70118 USA
[3] Tulane Univ, Dept Biomed Engn, New Orleans, LA 70118 USA
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[5] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[6] Xi An Jiao Tong Univ, Brain Sci Lab, SuZhou Acad, Xian, Peoples R China
[7] Georgia State Univ, Comp Sci, Atlanta, GA 30303 USA
[8] Triinst Ctr Translat Res Neuroimaging & Data Sci, Machine Learning Core, Atlanta, GA 30303 USA
[9] Tulane Univ, Biomed Engn & Biostat & Bioinformat, Sch Sci & Engn, New Orleans, LA 70118 USA
[10] Sch Publ Hlth & Trop Med, New Orleans, LA USA
[11] Mind Res Network, Albuquerque, NM USA
[12] Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
[13] Georgia State Georgia Tech & Emory, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30302 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Neuroimaging; Deep learning; Sensitivity and specificity; Data models; Reliability; Fuels; Task analysis; NETWORKS;
D O I
10.1109/MSP.2021.3128348
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning (DL) has been extremely successful when applied to the analysis of natural images. By contrast, analyzing neuroimaging data presents some unique challenges, including higher dimensionality, smaller sample sizes, multiple heterogeneous modalities, and a limited ground truth. In this article, we discuss DL methods in the context of four diverse and important categories in the neuroimaging field: classification/prediction, dynamic activity/connectivity, multimodal fusion, and interpretation/visualization. We highlight recent progress in each of these categories, discuss the benefits of combining data characteristics and model architectures, and derive guidelines for the use of DL in neuroimaging data. For each category, we also assess promising applications and major challenges to overcome. Finally, we discuss future directions of neuroimaging DL for clinical applications, a topic of great interest, touching on all four categories.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [41] Data Management Challenges for Deep Learning
    Raj, Aiswarya
    Bosch, Jan
    Olsson, Helena Holmstrom
    Arpteg, Anders
    Brinne, Bjorn
    2019 45TH EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS (SEAA 2019), 2019, : 140 - 147
  • [42] Challenges in Deep Learning for Multimodal Applications
    Ghosh, Sayan
    ICMI'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2015, : 611 - 615
  • [43] Software Engineering Challenges of Deep Learning
    Arpteg, Anders
    Brinne, Bjorn
    Crnkovic-Friis, Luka
    Bosch, Jan
    44TH EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS (SEAA 2018), 2018, : 50 - 59
  • [44] Deep Learning in Automotive: Challenges and Opportunities
    Falcini, Fabio
    Lami, Giuseppe
    SOFTWARE PROCESS IMPROVEMENT AND CAPABILITY DETERMINATION, SPICE 2017, 2017, 770 : 279 - 288
  • [45] Challenges concerning deep learning in SPOCs
    Filius, Renee M.
    de Kleijn, Renske A. M.
    Uijl, Sabine G.
    Prins, Frans J.
    van Rijen, Harold V. M.
    Grobbee, Diederick E.
    INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCED LEARNING, 2018, 10 (1-2) : 111 - 127
  • [46] Challenges for the Repeatability of Deep Learning Models
    Alahmari, Saeed S.
    Goldgof, Dmitry B.
    Mouton, Peter R.
    Hall, Lawrence O.
    IEEE ACCESS, 2020, 8 : 211860 - 211868
  • [47] A General Survey on Attention Mechanisms in Deep Learning
    Brauwers, Gianni
    Frasincar, Flavius
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3279 - 3298
  • [48] Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data
    Jo, Taeho
    Nho, Kwangsik
    Saykin, Andrew J.
    FRONTIERS IN AGING NEUROSCIENCE, 2019, 11
  • [49] Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations
    Halkiopoulos, Constantinos
    Gkintoni, Evgenia
    Aroutzidis, Anthimos
    Antonopoulou, Hera
    DIAGNOSTICS, 2025, 15 (04)
  • [50] Deep Semantic Feature Learning for Software Defect Prediction
    Wang, Song
    Liu, Taiyue
    Nam, Jaechang
    Tan, Lin
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2020, 46 (12) : 1267 - 1293