Deep Learning in Neuroimaging: Promises and challenges

被引:37
|
作者
Yan, Weizheng [1 ]
Qu, Gang [2 ]
Hu, Wenxing [2 ]
Abrol, Anees [1 ]
Cai, Biao [2 ]
Qiao, Chen [3 ,4 ,5 ,6 ]
Plis, Sergey M. [7 ,8 ]
Wang, Yu-Ping [9 ,10 ]
Sui, Jing [11 ,12 ]
Calhoun, Vince D. [13 ]
机构
[1] Emory Univ, Georgia State Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Georgia Inst Technol, Atlanta, GA 30303 USA
[2] Tulane Univ, Biomed Engn, New Orleans, LA 70118 USA
[3] Tulane Univ, Dept Biomed Engn, New Orleans, LA 70118 USA
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[5] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[6] Xi An Jiao Tong Univ, Brain Sci Lab, SuZhou Acad, Xian, Peoples R China
[7] Georgia State Univ, Comp Sci, Atlanta, GA 30303 USA
[8] Triinst Ctr Translat Res Neuroimaging & Data Sci, Machine Learning Core, Atlanta, GA 30303 USA
[9] Tulane Univ, Biomed Engn & Biostat & Bioinformat, Sch Sci & Engn, New Orleans, LA 70118 USA
[10] Sch Publ Hlth & Trop Med, New Orleans, LA USA
[11] Mind Res Network, Albuquerque, NM USA
[12] Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
[13] Georgia State Georgia Tech & Emory, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30302 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Neuroimaging; Deep learning; Sensitivity and specificity; Data models; Reliability; Fuels; Task analysis; NETWORKS;
D O I
10.1109/MSP.2021.3128348
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning (DL) has been extremely successful when applied to the analysis of natural images. By contrast, analyzing neuroimaging data presents some unique challenges, including higher dimensionality, smaller sample sizes, multiple heterogeneous modalities, and a limited ground truth. In this article, we discuss DL methods in the context of four diverse and important categories in the neuroimaging field: classification/prediction, dynamic activity/connectivity, multimodal fusion, and interpretation/visualization. We highlight recent progress in each of these categories, discuss the benefits of combining data characteristics and model architectures, and derive guidelines for the use of DL in neuroimaging data. For each category, we also assess promising applications and major challenges to overcome. Finally, we discuss future directions of neuroimaging DL for clinical applications, a topic of great interest, touching on all four categories.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [31] A Review on Bayesian Deep Learning in Healthcare: Applications and Challenges
    Abdullah, Abdullah A.
    Hassan, Masoud M.
    Mustafa, Yaseen T.
    IEEE ACCESS, 2022, 10 : 36538 - 36562
  • [32] Deep Learning for massive MIMO: Challenges and Future prospects
    Bhatia, Vandana
    Tripathy, Malay Ranjan
    Ranjan, Priya
    2020 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT 2020), 2020, : 26 - 31
  • [33] Deep Learning Techniques for Automated Dementia Diagnosis Using Neuroimaging Modalities: A Systematic Review
    Ozkan, Dilek
    Katar, Oguzhan
    Ak, Murat
    Al-Antari, Mugahed A.
    Yasan Ak, Nehir
    Yildirim, Ozal
    Mir, Hasan S.
    Tan, Ru-San
    Rajendra Acharya, U.
    IEEE ACCESS, 2024, 12 : 127879 - 127902
  • [34] Recent advances in the open-source ClinicaDL software for reproducible neuroimaging with deep learning
    Hassanaly, Ravi
    Brianceau, Camille
    Diaz, Mauricio
    Loizillon, Sophie
    Thibeau-Sutre, Elina
    Cassereau, Nathan
    Colliot, Olivier
    Burgos, Ninon
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [35] Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
    Vieira, Sandra
    Pinaya, Walter H. L.
    Mechelli, Andrea
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2017, 74 : 58 - 75
  • [36] Interpretable Deep Learning for Neuroimaging-Based Diagnostic Classification
    Deshpande, Gopikrishna
    Masood, Janzaib
    Huynh, Nguyen
    Denney Jr, Thomas S.
    Dretsch, Michael N.
    IEEE ACCESS, 2024, 12 : 55474 - 55490
  • [37] Advanced deep learning approaches for medical neuroimaging data with limitation
    Tang, Zhiri
    Li, Ming
    Hu, Ruihan
    Dev, Kapal
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2023, 17
  • [38] A Review of NLIDB With Deep Learning: Findings, Challenges and Open Issues
    Abbas, Shanza
    Khan, Muhammad Umair
    Lee, Scott Uk-Jin
    Abbas, Asad
    Bashir, Ali Kashif
    IEEE ACCESS, 2022, 10 : 14927 - 14945
  • [39] Understanding deep learning - challenges and prospects
    Adnan, Niha
    Umer, Fahad
    JOURNAL OF THE PAKISTAN MEDICAL ASSOCIATION, 2022, 72 (02) : S66 - S70
  • [40] Deep Learning in Cybersecurity: Challenges and Approaches
    Imamverdiyev, Yadigar N.
    Abdullayeva, Fargana J.
    INTERNATIONAL JOURNAL OF CYBER WARFARE AND TERRORISM, 2020, 10 (02) : 82 - 105