Deep Learning in Neuroimaging: Promises and challenges

被引:37
|
作者
Yan, Weizheng [1 ]
Qu, Gang [2 ]
Hu, Wenxing [2 ]
Abrol, Anees [1 ]
Cai, Biao [2 ]
Qiao, Chen [3 ,4 ,5 ,6 ]
Plis, Sergey M. [7 ,8 ]
Wang, Yu-Ping [9 ,10 ]
Sui, Jing [11 ,12 ]
Calhoun, Vince D. [13 ]
机构
[1] Emory Univ, Georgia State Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Georgia Inst Technol, Atlanta, GA 30303 USA
[2] Tulane Univ, Biomed Engn, New Orleans, LA 70118 USA
[3] Tulane Univ, Dept Biomed Engn, New Orleans, LA 70118 USA
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[5] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[6] Xi An Jiao Tong Univ, Brain Sci Lab, SuZhou Acad, Xian, Peoples R China
[7] Georgia State Univ, Comp Sci, Atlanta, GA 30303 USA
[8] Triinst Ctr Translat Res Neuroimaging & Data Sci, Machine Learning Core, Atlanta, GA 30303 USA
[9] Tulane Univ, Biomed Engn & Biostat & Bioinformat, Sch Sci & Engn, New Orleans, LA 70118 USA
[10] Sch Publ Hlth & Trop Med, New Orleans, LA USA
[11] Mind Res Network, Albuquerque, NM USA
[12] Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
[13] Georgia State Georgia Tech & Emory, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30302 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Neuroimaging; Deep learning; Sensitivity and specificity; Data models; Reliability; Fuels; Task analysis; NETWORKS;
D O I
10.1109/MSP.2021.3128348
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning (DL) has been extremely successful when applied to the analysis of natural images. By contrast, analyzing neuroimaging data presents some unique challenges, including higher dimensionality, smaller sample sizes, multiple heterogeneous modalities, and a limited ground truth. In this article, we discuss DL methods in the context of four diverse and important categories in the neuroimaging field: classification/prediction, dynamic activity/connectivity, multimodal fusion, and interpretation/visualization. We highlight recent progress in each of these categories, discuss the benefits of combining data characteristics and model architectures, and derive guidelines for the use of DL in neuroimaging data. For each category, we also assess promising applications and major challenges to overcome. Finally, we discuss future directions of neuroimaging DL for clinical applications, a topic of great interest, touching on all four categories.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [21] Fuzzy Deep Learning for the Diagnosis of Alzheimer's Disease: Approaches and Challenges
    Tanveer, M.
    Sajid, M.
    Akhtar, M.
    Quadir, A.
    Goel, T.
    Aimen, A.
    Mitra, S.
    Zhang, Y-d
    Lin, C. T.
    Ser, J. Del
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (10) : 5477 - 5492
  • [22] Deep Factor Learning for Accurate Brain Neuroimaging Data Analysis on Discrimination for Structural MRI and Functional MRI
    Ke, Hengjin
    Chen, Dan
    Yao, Quanming
    Tang, Yunbo
    Wu, Jia
    Monaghan, Jessica
    Sowman, Paul
    Mcalpine, David
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (04) : 582 - 595
  • [23] Blockchain for deep learning: review and open challenges
    Shafay, Muhammad
    Ahmad, Raja Wasim
    Salah, Khaled
    Yaqoob, Ibrar
    Jayaraman, Raja
    Omar, Mohammed
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (01): : 197 - 221
  • [24] Conventional machine learning and deep learning in Alzheimer's disease diagnosis using neuroimaging: A review
    Zhao, Zhen
    Chuah, Joon Huang
    Lai, Khin Wee
    Chow, Chee-Onn
    Gochoo, Munkhjargal
    Dhanalakshmi, Samiappan
    Wang, Na
    Bao, Wei
    Wu, Xiang
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2023, 17
  • [25] Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review
    Shoeibi, Afshin
    Khodatars, Marjane
    Jafari, Mahboobeh
    Ghassemi, Navid
    Moridian, Parisa
    Alizadehsani, Roohallah
    Ling, Sai Ho
    Khosravi, Abbas
    Alinejad-Rokny, Hamid
    Lam, H. K.
    Fuller-Tyszkiewicz, Matthew
    Acharya, U. Rajendra
    Anderson, Donovan
    Zhang, Yudong
    Gorriz, Juan Manuel
    INFORMATION FUSION, 2023, 93 : 85 - 117
  • [26] A Practical Roadmap to Implementing Deep Learning Segmentation in the Clinical Neuroimaging Research Workflow
    Caceres, Marco Perez
    Gauvin, Alexandre
    Dumais, Felix
    Iorio-Morin, Christian
    WORLD NEUROSURGERY, 2024, 189 : 193 - 200
  • [27] ClinicaDL: An open-source deep learning software for reproducible neuroimaging processing
    Thibeau-Sutre, Elina
    Diaz, Mauricio
    Hassanaly, Ravi
    Routier, Alexandre
    Dormont, Didier
    Colliot, Olivier
    Burgos, Ninon
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 220
  • [28] Deep Learning-based Image Enhancement Techniques for Fast MRI in Neuroimaging
    Yoo, Roh-Eul
    Choi, Seung Hong
    MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2024, : 341 - 351
  • [29] A non-parametric statistical inference framework for Deep Learning in current neuroimaging
    Jimenez-Mesa, Carmen
    Ramirez, Javier
    Suckling, John
    Voeglein, Jonathan
    Levin, Johannes
    Gorriz, Juan Manuel
    INFORMATION FUSION, 2023, 91 : 598 - 611
  • [30] Editorial: Recent Developments of Deep Learning in Analyzing, Decoding, and Understanding Neuroimaging Signals
    Li, Junhua
    FRONTIERS IN NEUROSCIENCE, 2021, 15