Deep Learning in Neuroimaging: Promises and challenges

被引:37
|
作者
Yan, Weizheng [1 ]
Qu, Gang [2 ]
Hu, Wenxing [2 ]
Abrol, Anees [1 ]
Cai, Biao [2 ]
Qiao, Chen [3 ,4 ,5 ,6 ]
Plis, Sergey M. [7 ,8 ]
Wang, Yu-Ping [9 ,10 ]
Sui, Jing [11 ,12 ]
Calhoun, Vince D. [13 ]
机构
[1] Emory Univ, Georgia State Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Georgia Inst Technol, Atlanta, GA 30303 USA
[2] Tulane Univ, Biomed Engn, New Orleans, LA 70118 USA
[3] Tulane Univ, Dept Biomed Engn, New Orleans, LA 70118 USA
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[5] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[6] Xi An Jiao Tong Univ, Brain Sci Lab, SuZhou Acad, Xian, Peoples R China
[7] Georgia State Univ, Comp Sci, Atlanta, GA 30303 USA
[8] Triinst Ctr Translat Res Neuroimaging & Data Sci, Machine Learning Core, Atlanta, GA 30303 USA
[9] Tulane Univ, Biomed Engn & Biostat & Bioinformat, Sch Sci & Engn, New Orleans, LA 70118 USA
[10] Sch Publ Hlth & Trop Med, New Orleans, LA USA
[11] Mind Res Network, Albuquerque, NM USA
[12] Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
[13] Georgia State Georgia Tech & Emory, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30302 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Neuroimaging; Deep learning; Sensitivity and specificity; Data models; Reliability; Fuels; Task analysis; NETWORKS;
D O I
10.1109/MSP.2021.3128348
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning (DL) has been extremely successful when applied to the analysis of natural images. By contrast, analyzing neuroimaging data presents some unique challenges, including higher dimensionality, smaller sample sizes, multiple heterogeneous modalities, and a limited ground truth. In this article, we discuss DL methods in the context of four diverse and important categories in the neuroimaging field: classification/prediction, dynamic activity/connectivity, multimodal fusion, and interpretation/visualization. We highlight recent progress in each of these categories, discuss the benefits of combining data characteristics and model architectures, and derive guidelines for the use of DL in neuroimaging data. For each category, we also assess promising applications and major challenges to overcome. Finally, we discuss future directions of neuroimaging DL for clinical applications, a topic of great interest, touching on all four categories.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [1] Deep Learning in Neuroimaging: Overcoming Challenges With Emerging Approaches
    Smucny, Jason
    Shi, Ge
    Davidson, Ian
    FRONTIERS IN PSYCHIATRY, 2022, 13
  • [2] Automatically Generating Dockerfiles via Deep Learning: Challenges and Promises
    Rosa, Giovanni
    Mastropaolo, Antonio
    Scalabrino, Simone
    Bavota, Gabriele
    Oliveto, Rocco
    2023 IEEE/ACM INTERNATIONAL CONFERENCE ON SOFTWARE AND SYSTEM PROCESSES, ICSSP, 2023, : 1 - 12
  • [3] Advances, challenges, and promises in pediatric neuroimaging of neurodevelopmental disorders
    Bednarz, Haley M.
    Kana, Rajesh K.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2018, 90 : 50 - 69
  • [4] Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research
    Eitel, Fabian
    Schulz, Marc-Andre
    Seiler, Moritz
    Walter, Henrik
    Ritter, Kerstin
    EXPERIMENTAL NEUROLOGY, 2021, 339
  • [5] Deep Learning Aided Neuroimaging and Brain Regulation
    Xu, Mengze
    Ouyang, Yuanyuan
    Yuan, Zhen
    SENSORS, 2023, 23 (11)
  • [6] Graph Deep Learning: State of the Art and Challenges
    Georgousis, Stavros
    Kenning, Michael P.
    Xie, Xianghua
    IEEE ACCESS, 2021, 9 : 22106 - 22140
  • [7] Deep learning in neuroimaging of epilepsy
    Garcia-Ramo, Karla Batista
    Sanchez-Catasus, Carlos A.
    Winston, Gavin P.
    CLINICAL NEUROLOGY AND NEUROSURGERY, 2023, 232
  • [8] Deep learning in pediatric neuroimaging
    Wang, Jian
    Wang, Jiaji
    Wang, Shuihua
    Zhang, Yudong
    DISPLAYS, 2023, 80
  • [9] Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges
    Shrestha, Yash Raj
    Krishna, Vaibhav
    von Krogh, Georg
    JOURNAL OF BUSINESS RESEARCH, 2021, 123 : 588 - 603
  • [10] Deep learning applications in vascular dementia using neuroimaging
    Dong, Chao
    Hayashi, Shizuka
    CURRENT OPINION IN PSYCHIATRY, 2024, 37 (02) : 101 - 106