Optimized laser-assisted electron injection into a quasilinear plasma wakefield

被引:4
作者
Khudiakov, V [1 ]
Pukhov, A. [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany
关键词
ACCELERATION;
D O I
10.1103/PhysRevE.105.035201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an electron injection scheme for plasma wakefield acceleration. The method is based on a recently proposed technique of fast electron generation via laser-solid interaction: a femtosecond laser pulse with the energy of tens of mJ hitting a dense plasma target at 45 degrees angle expels a well collimated bunch of electrons and accelerates these close to the specular direction up to several MeVs. We study trapping of these fast electrons by a quasilinear wakefield excited by an external beam driver in a surrounding low density plasma. This configuration can be relevant to the AWAKE experiment at CERN. We vary different injection parameters: the phase and angle of injection, the laser pulse energy. An approximate trapping condition is derived for a linear axisymmetric wake. It is used to optimize the trapped charge and is verified by three-dimensional particle-in-cell simulations. It is shown that a quasilinear plasma wave with the accelerating field similar to 2.5 GV/m can trap electron bunches with similar to 100 pC charge, similar to 60 mu m transverse normalized emittance and accelerate them to energies of several GeV with the spread < 1% after 10 m..
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Conceptual design of a laser wakefield acceleration experiment with external bunch injection
    Khachatryan, A. G.
    Luttikhof, M. J. H.
    Irman, A.
    van Goor, F. A.
    Verschuur, J. W. J.
    Bastiaens, H. M. J.
    Boller, K. -J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 566 (02) : 244 - 249
  • [12] Wakefield decay in a radially bounded plasma due to formation of electron halo
    Spitsyn, R., I
    Lotov, K., V
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (05)
  • [13] Fluid simulation of relativistic electron beam driven wakefield in a cold plasma
    Bera, Ratan Kumar
    Sengupta, Sudip
    Das, Amita
    PHYSICS OF PLASMAS, 2015, 22 (07)
  • [14] Real-time visualization of the laser-plasma wakefield dynamics
    Wan, Yang
    Tata, Sheroy
    Seemann, Omri
    Levine, Eitan Y.
    Kroupp, Eyal
    Malka, Victor
    SCIENCE ADVANCES, 2024, 10 (05)
  • [15] Amplitude enhancement of plasma wakefield by interaction of relativistic Gaussian electron beam with inhomogeneous magnetized plasma
    Tabrizi, J. Sharifzadeh
    Khorashadizadeh, S. M.
    Fallah, R.
    Niknam, A. R.
    AIP ADVANCES, 2020, 10 (01)
  • [16] Effect of laser intensity redistribution on terahertz field generation via laser wakefield in a magnetized plasma
    Singh, A. P.
    Varshney, P.
    Jain, A.
    Gupta, D. N.
    Kundu, M.
    Gopal, K.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (10) : 3119 - 3126
  • [17] Wakefield Generation and Enhancement of Electron Energy to the Multi-GeV in a Magnetized Plasma
    Nikrah, B.
    Jafari, S.
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (03) : 1003 - 1011
  • [18] Independent control of laser wakefield-accelerated electron-beam parameters
    Golovin, G.
    Chen, S.
    Powers, N.
    Liu, C.
    Banerjee, S.
    Zhang, J.
    Zeng, M.
    Sheng, Z.
    Umstadter, D.
    LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS III; AND MEDICAL APPLICATIONS OF LASER-GENERATED BEAMS OF PARTICLES III, 2015, 9514
  • [19] Wakefield generation by chirped super-Gaussian laser pulse in inhomogeneous plasma
    Yao, Zhengwei
    Cheng, Lihong
    Tang, Rongan
    Xue, Jukui
    PLASMA SCIENCE & TECHNOLOGY, 2018, 20 (11)
  • [20] The effect of the laser pulse shape on the wakefield generation in field-ionized plasma
    Khalilzadeh, E.
    Jafari, M. J.
    Rezaei, S.
    Dehghani, Z.
    CHINESE JOURNAL OF PHYSICS, 2021, 71 : 212 - 223