Privacy and Energy Co-Aware Data Aggregation Computation Offloading for Fog-Assisted IoT Networks

被引:13
作者
Chen, Siguang [1 ,2 ]
You, Zihui [1 ]
Ruan, Xiukai [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Jiangsu Engn Res Ctr Commun & Network Technol, Nanjing 210003, Peoples R China
[2] Anhui Normal Univ, Anhui Prov Key Lab Network & Informat Secur, Wuhu 241000, Peoples R China
[3] Wenzhou Univ, Inst Intelligent Locks, Wenzhou 325035, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Energy consumption; Task analysis; Data privacy; Data aggregation; Security; Edge computing; Sensors; Computation offloading; fog computing; data aggregation; data security; INTERNET; SCHEME; DELAY;
D O I
10.1109/ACCESS.2020.2987749
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the exponential growth of the data generated by Internet of Things (IoT) devices, computation offloading becomes a promising method to alleviate the computation burden of local IoT device and improve processing latency. In order to address the bottleneck problem of limited resources in IoT device more efficiently and provide security guarantee in data processing and forwarding process, in this paper, we propose a privacy and energy co-aware data aggregation computation offloading for fog-assisted IoT networks. Specifically, a fog-assisted three-layer security computing architecture is developed to counteract security threats and enable the aggregation operation can be performed in ciphertext. Meanwhile, a momentum gradient descent based energy-efficient offloading decision algorithm is developed to minimize the total energy consumption of computation tasks, which can achieve the optimal value with fast convergence rate. Finally, the security and performance evaluations reveal that the developed data aggregation offloading scheme is a secure data processing scheme and achieves significant performance advantage in energy consumption. For example, the total energy consumption can be reduced by an average of 23.1 & x0025; compared with benchmark PGCO solution.
引用
收藏
页码:72424 / 72434
页数:11
相关论文
共 37 条
[1]   Improving fog computing performance via Fog-2-Fog collaboration [J].
Al-khafajiy, Mohammed ;
Baker, Thar ;
Al-Libawy, Hilal ;
Maamar, Zakaria ;
Aloqaily, Moayad ;
Jararweh, Yaser .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 100 :266-280
[2]   IoT-Fog Optimal Workload via Fog Offloading [J].
Al-khafajiy, Mohammed ;
Baker, Thar ;
Waraich, Atif ;
Al-Jumeily, Dhiya ;
Hussain, Abir .
2018 IEEE/ACM INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING COMPANION (UCC COMPANION), 2018, :359-364
[3]   A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing [J].
Ali, Zaiwar ;
Jiao, Lei ;
Baker, Thar ;
Abbas, Ghulam ;
Abbas, Ziaul Haq ;
Khaf, Sadia .
IEEE ACCESS, 2019, 7 :149623-149633
[4]  
[Anonymous], 2018, WIREL COMMUN MOB COM, DOI DOI 10.1155/2018/6285719
[5]  
[Anonymous], COMPUT RES REPOSITOR
[6]  
Bonomi F, 2012, P 1 ED MCC WORKSH MO, P13, DOI DOI 10.1145/2342509.2342513
[7]  
Chang Z, 2017, IEEE GLOB COMM CONF
[8]   Efficient Privacy Preserving Data Collection and Computation Offloading for Fog-Assisted IoT [J].
Chen, Siguang ;
Zhu, Xi ;
Zhang, Haijun ;
Zhao, Chuanxin ;
Yang, Geng ;
Wang, Kun .
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2020, 5 (04) :526-540
[9]   Energy-Optimal Dynamic Computation Offloading for Industrial IoT in Fog Computing [J].
Chen, Siguang ;
Zheng, Yimin ;
Lu, Weifeng ;
Varadarajan, Vijayakumar ;
Wang, Kun .
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2020, 4 (02) :566-576
[10]   Fog-based Optimized Kronecker-Supported Compression Design for Industrial IoT [J].
Chen, Siguang ;
Wang, Zhihao ;
Zhang, Haijun ;
Yang, Geng ;
Wang, Kun .
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2020, 5 (01) :95-106