Emerging single-atom iron catalysts for advanced catalytic systems

被引:22
作者
Chang, Baisong [1 ]
Wu, Shaolong [1 ]
Wang, Yang [2 ]
Sun, Taolei [1 ]
Cheng, Zhen [3 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Suzhou Chien Shiung Inst Technol, Dept Med Technol, Taicang 215411, Peoples R China
[3] Chinese Acad Sci, Mol Imaging Ctr, Shanghai Inst Mat Med, State Key Lab Drug Res, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
COVALENT ORGANIC FRAMEWORKS; N-DOPED CARBON; EFFICIENT OXYGEN REDUCTION; ATOMICALLY DISPERSED IRON; HYDROGEN EVOLUTION REACTION; ONE-POT SYNTHESIS; SELECTIVE HYDROGENATION; GENERAL-SYNTHESIS; LOW-TEMPERATURE; POROUS CARBONS;
D O I
10.1039/d2nh00362g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the elusive structure-function relationship, traditional nanocatalysts always yield limited catalytic activity and selectivity, making them practically difficult to replace natural enzymes in wide industrial and biomedical applications. Accordingly, single-atom catalysts (SACs), defined as catalysts containing atomically dispersed active sites on a support material, strikingly show the highest atomic utilization and drastically boosted catalytic performances to functionally mimic or even outperform natural enzymes. The molecular characteristics of SACs (e.g., unique metal-support interactions and precisely located metal sites), especially single-atom iron catalysts (Fe-SACs) that have a similar catalytic structure to the catalytically active center of metalloprotease, enable the accurate identification of active centers in catalytic reactions, which afford ample opportunity for unraveling the structure-function relationship of Fe-SACs. In this review, we present an overview of the recent advances of support materials for anchoring an atomic dispersion of Fe. Subsequently, we highlight the structural designability of support materials as two sides of the same coin. Moreover, the applications described herein illustrate the utility of Fe-SACs in a broad scope of industrially and biologically important reactions. Finally, we present an outlook of the major challenges and opportunities remaining for the successful combination of single Fe atoms and catalysts.
引用
收藏
页码:1340 / 1387
页数:48
相关论文
共 332 条
[1]   Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design [J].
Abghoui, Younes ;
Garden, Anna L. ;
Hlynsson, Valtyr Freyr ;
Bjorgvinsdottir, Snaedis ;
Olafsdottir, Hrefna ;
Skulason, Egill .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (07) :4909-4918
[2]   Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation [J].
Ackermann, MD ;
Pedersen, TM ;
Hendriksen, BLM ;
Robach, O ;
Bobaru, SC ;
Popa, I ;
Quiros, C ;
Kim, H ;
Hammer, B ;
Ferrer, S ;
Frenken, JWM .
PHYSICAL REVIEW LETTERS, 2005, 95 (25)
[3]   Three-Dimensional Graphene Foams: Synthesis, Properties, Biocompatibility, Biodegradability, and Applications in Tissue Engineering [J].
Amani, Hamed ;
Mostafavi, Ebrahim ;
Arzaghi, Hamidreza ;
Davaran, Soodabeh ;
Akbarzadeh, Abolfazl ;
Akhavan, Omid ;
Pazoki-Toroudi, Hamidreza ;
Webster, Thomas J. .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2019, 5 (01) :193-214
[4]   Controllable tuning of Fe-N nanosheets by Co substitution for enhanced oxygen evolution reaction [J].
An, Li ;
Feng, Jianrui ;
Zhang, Yu ;
Zhao, Yong-Qing ;
Si, Rui ;
Wang, Gui-Chang ;
Cheng, Fangyi ;
Xi, Pinxian ;
Sun, Shouheng .
NANO ENERGY, 2019, 57 :644-652
[5]   A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites [J].
An, Sufeng ;
Zhang, Guanghui ;
Liu, Jiaqiang ;
Li, Keyan ;
Wan, Gang ;
Liang, Yan ;
Ji, Donghui ;
Miller, Jeffrey T. ;
Song, Chunshan ;
Liu, Wei ;
Liu, Zhongmin ;
Guo, Xinwen .
CHINESE JOURNAL OF CATALYSIS, 2020, 41 (08) :1198-1207
[6]   Characterization of an FeN-NH2 Intermediate Relevant to Catalytic N2 Reduction to NH3 [J].
Anderson, John S. ;
Cutsail, George E., III ;
Rittle, Jonathan ;
Connor, Bridget A. ;
Gunderson, William A. ;
Zhang, Limei ;
Hoffman, Brian M. ;
Peters, Jonas C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (24) :7803-7809
[7]   Catalytic conversion of nitrogen to ammonia by an iron model complex [J].
Anderson, John S. ;
Rittle, Jonathan ;
Peters, Jonas C. .
NATURE, 2013, 501 (7465) :84-+
[8]   Markedly Enhanced Oxygen Reduction Activity of Single-Atom Fe Catalysts via Integration with Fe Nanoclusters [J].
Ao, Xiang ;
Zhang, Wei ;
Li, Zhishan ;
Li, Jian-Gang ;
Soule, Luke ;
Huang, Xing ;
Chiang, Wei-Hung ;
Chen, Hao Ming ;
Wang, Chundong ;
Liu, Meilin ;
Zeng, Xiao Cheng .
ACS NANO, 2019, 13 (10) :11853-11862
[9]   Structural Descriptors of Zeolitic-Imidazolate Frameworks Are Keys to the Activity of Fe-N-C Catalysts [J].
Armel, Vanessa ;
Hindocha, Sheena ;
Salles, Fabrice ;
Bennett, Stephen ;
Jones, Deborah ;
Jaouen, Frederic .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (01) :453-464
[10]   Recent Advances in Transition Metal-Catalyzed Hydrogenation of Nitriles [J].
Bagal, Dattatraya B. ;
Bhanage, Bhalchandra M. .
ADVANCED SYNTHESIS & CATALYSIS, 2015, 357 (05) :883-900