Calabi-Yau CFTs and random matrices

被引:9
|
作者
Afkhami-Jeddi, Nima [1 ,2 ]
Ashmore, Anthony [1 ,2 ,3 ]
Cordova, Clay [1 ,2 ]
机构
[1] Univ Chicago, Enrico Fermi Inst, 933 E 56th St, Chicago, IL 60637 USA
[2] Univ Chicago, Kadanoff Ctr Theoret Phys, 933 E 56th St, Chicago, IL 60637 USA
[3] Sorbonne Univ, Lab Phys Theor & Hautes Energies, 4 Pl Jussieu, F-75005 Paris, France
关键词
Conformal Field Theory; Sigma Models; Differential and Algebraic Geometry; Superstring Vacua; SPECTRAL FORM-FACTOR; ENERGY-LEVELS; ELLIPTIC GENERA; FINITENESS; SUPERSYMMETRY; UNIVERSALITY; CONSTRAINTS; REPULSION; MANIFOLDS; SURFACES;
D O I
10.1007/JHEP02(2022)021
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using numerical methods for finding Ricci-flat metrics, we explore the spectrum of local operators in two-dimensional conformal field theories defined by sigma models on Calabi-Yau targets at large volume. Focusing on the examples of K3 and the quintic, we show that the spectrum, averaged over a region in complex structure moduli space, possesses the same statistical properties as the Gaussian orthogonal ensemble of random matrix theory.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Flux compactifications on Calabi-Yau threefolds
    Giryavets, A
    Kachru, S
    Tripathy, PK
    Trivedi, SP
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (04):
  • [42] Heterotic Calabi-Yau compactifications with flux
    Michael Klaput
    Andre Lukas
    Eirik E. Svanes
    Journal of High Energy Physics, 2013
  • [43] On the regularity of conical Calabi-Yau potentials
    Nghiem, Tran-Trung
    ANNALES POLONICI MATHEMATICI, 2023, 131 (01) : 21 - 56
  • [44] Stabilizing the complex structure in heterotic Calabi-Yau vacua
    Lara B. Anderson
    James Gray
    Andre Lukas
    Burt Ovrut
    Journal of High Energy Physics, 2011
  • [45] The Basso-Dixon formula and Calabi-Yau geometry
    Duhr, Claude
    Klemm, Albrecht
    Loebbert, Florian
    Nega, Christoph
    Porkert, Franziska
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [46] Fibration structure in toric hypersurface Calabi-Yau threefolds
    Huang, Yu-Chien
    Taylor, Washington
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (03)
  • [47] Time reversal and CP invariance in Calabi-Yau compactifications
    Boenisch, Kilian
    Elmi, Mohamed
    Kashani-Poor, Amir-Kian
    Klemm, Albrecht
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [48] Generalization of Calabi-Yau/Landau-Ginzburg correspondence
    Eguchi, T
    Jinzenji, M
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (02):
  • [49] Machine learning Calabi-Yau hypersurfaces
    Berman, David S.
    He, Yang-Hui
    Hirst, Edward
    PHYSICAL REVIEW D, 2022, 105 (06)
  • [50] The Calabi-Yau theorem and Kahler currents
    Tosatti, Valentino
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 20 (02) : 381 - 404