Calabi-Yau CFTs and random matrices

被引:9
|
作者
Afkhami-Jeddi, Nima [1 ,2 ]
Ashmore, Anthony [1 ,2 ,3 ]
Cordova, Clay [1 ,2 ]
机构
[1] Univ Chicago, Enrico Fermi Inst, 933 E 56th St, Chicago, IL 60637 USA
[2] Univ Chicago, Kadanoff Ctr Theoret Phys, 933 E 56th St, Chicago, IL 60637 USA
[3] Sorbonne Univ, Lab Phys Theor & Hautes Energies, 4 Pl Jussieu, F-75005 Paris, France
关键词
Conformal Field Theory; Sigma Models; Differential and Algebraic Geometry; Superstring Vacua; SPECTRAL FORM-FACTOR; ENERGY-LEVELS; ELLIPTIC GENERA; FINITENESS; SUPERSYMMETRY; UNIVERSALITY; CONSTRAINTS; REPULSION; MANIFOLDS; SURFACES;
D O I
10.1007/JHEP02(2022)021
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using numerical methods for finding Ricci-flat metrics, we explore the spectrum of local operators in two-dimensional conformal field theories defined by sigma models on Calabi-Yau targets at large volume. Focusing on the examples of K3 and the quintic, we show that the spectrum, averaged over a region in complex structure moduli space, possesses the same statistical properties as the Gaussian orthogonal ensemble of random matrix theory.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Calabi-Yau metrics for quotients and complete intersections
    Braun, Volker
    Brelidze, Tamaz
    Douglas, Michael R.
    Ovrut, Burt A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (05):
  • [32] Calabi-Yau Threefolds with Small Hodge Numbers
    Candelas, Philip
    Constantin, Andrei
    Mishra, Challenger
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (06):
  • [33] Calabi-Yau duals of torus orientifolds
    Schulz, Michael B.
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (05):
  • [34] Quantum periods of Calabi-Yau fourfolds
    Gerhardus, Andreas
    Jockers, Hans
    NUCLEAR PHYSICS B, 2016, 913 : 425 - 474
  • [35] Modular Constraints on Calabi-Yau Compactifications
    Keller, Christoph A.
    Ooguri, Hirosi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 324 (01) : 107 - 127
  • [37] The Expanding Zoo of Calabi-Yau Threefolds
    Davies, Rhys
    ADVANCES IN HIGH ENERGY PHYSICS, 2011, 2011
  • [38] The many symmetries of Calabi-Yau compactifications
    Emam, Moataz H.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (16)
  • [39] Heterotic Calabi-Yau compactifications with flux
    Klaput, Michael
    Lukas, Andre
    Svanes, Eirik E.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [40] ASYMPTOTICALLY CYLINDRICAL CALABI-YAU MANIFOLDS
    Haskins, Mark
    Hein, Hans-Joachim
    Nordstroem, Johannes
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (02) : 213 - 265