Calabi-Yau CFTs and random matrices

被引:9
|
作者
Afkhami-Jeddi, Nima [1 ,2 ]
Ashmore, Anthony [1 ,2 ,3 ]
Cordova, Clay [1 ,2 ]
机构
[1] Univ Chicago, Enrico Fermi Inst, 933 E 56th St, Chicago, IL 60637 USA
[2] Univ Chicago, Kadanoff Ctr Theoret Phys, 933 E 56th St, Chicago, IL 60637 USA
[3] Sorbonne Univ, Lab Phys Theor & Hautes Energies, 4 Pl Jussieu, F-75005 Paris, France
关键词
Conformal Field Theory; Sigma Models; Differential and Algebraic Geometry; Superstring Vacua; SPECTRAL FORM-FACTOR; ENERGY-LEVELS; ELLIPTIC GENERA; FINITENESS; SUPERSYMMETRY; UNIVERSALITY; CONSTRAINTS; REPULSION; MANIFOLDS; SURFACES;
D O I
10.1007/JHEP02(2022)021
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using numerical methods for finding Ricci-flat metrics, we explore the spectrum of local operators in two-dimensional conformal field theories defined by sigma models on Calabi-Yau targets at large volume. Focusing on the examples of K3 and the quintic, we show that the spectrum, averaged over a region in complex structure moduli space, possesses the same statistical properties as the Gaussian orthogonal ensemble of random matrix theory.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] All complete intersection Calabi-Yau four-folds
    Gray, James
    Haupt, Alexander S.
    Lukas, Andre
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):
  • [22] Fibrations in non-simply connected Calabi-Yau quotients
    Anderson, Lara B.
    Gray, James
    Hammack, Brian
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [23] Numerical spectra of the Laplacian for line bundles on Calabi-Yau hypersurfaces
    Ashmore, A.
    He, Y-H.
    Heyes, E.
    Ovrut, B. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (07)
  • [24] cymyc: Calabi-Yau Metrics, Yukawas, and Curvature
    Giorgi Butbaia
    Damián Mayorga Peña
    Justin Tan
    Per Berglund
    Tristan Hübsch
    Vishnu Jejjala
    Challenger Mishra
    Journal of High Energy Physics, 2025 (3)
  • [25] Bounding the heat trace of a Calabi-Yau manifold
    Marc-Antoine Fiset
    Johannes Walcher
    Journal of High Energy Physics, 2015
  • [26] Neural network approximations for Calabi-Yau metrics
    Vishnu Jejjala
    Damián Kaloni Mayorga Peña
    Challenger Mishra
    Journal of High Energy Physics, 2022
  • [27] String modular phases in Calabi-Yau families
    Kadir, Shabnam
    Lynker, Monika
    Schimmrigk, Rolf
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) : 2453 - 2469
  • [28] Super Calabi-Yau's and special Lagrangians
    Ricci, Riccardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (03):
  • [29] On classifying the divisor involutions in Calabi-Yau threefolds
    Gao, Xin
    Shukla, Pramod
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [30] Mirror symmetry and elliptic Calabi-Yau manifolds
    Yu-Chien Huang
    Washington Taylor
    Journal of High Energy Physics, 2019