Calabi-Yau CFTs and random matrices

被引:9
|
作者
Afkhami-Jeddi, Nima [1 ,2 ]
Ashmore, Anthony [1 ,2 ,3 ]
Cordova, Clay [1 ,2 ]
机构
[1] Univ Chicago, Enrico Fermi Inst, 933 E 56th St, Chicago, IL 60637 USA
[2] Univ Chicago, Kadanoff Ctr Theoret Phys, 933 E 56th St, Chicago, IL 60637 USA
[3] Sorbonne Univ, Lab Phys Theor & Hautes Energies, 4 Pl Jussieu, F-75005 Paris, France
关键词
Conformal Field Theory; Sigma Models; Differential and Algebraic Geometry; Superstring Vacua; SPECTRAL FORM-FACTOR; ENERGY-LEVELS; ELLIPTIC GENERA; FINITENESS; SUPERSYMMETRY; UNIVERSALITY; CONSTRAINTS; REPULSION; MANIFOLDS; SURFACES;
D O I
10.1007/JHEP02(2022)021
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using numerical methods for finding Ricci-flat metrics, we explore the spectrum of local operators in two-dimensional conformal field theories defined by sigma models on Calabi-Yau targets at large volume. Focusing on the examples of K3 and the quintic, we show that the spectrum, averaged over a region in complex structure moduli space, possesses the same statistical properties as the Gaussian orthogonal ensemble of random matrix theory.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Calabi-Yau CFTs and random matrices
    Nima Afkhami-Jeddi
    Anthony Ashmore
    Clay Córdova
    Journal of High Energy Physics, 2022
  • [2] Calabi-Yau manifolds and sporadic groups
    Banlaki, Andreas
    Chowdhury, Abhishek
    Kidambi, Abhiram
    Schimpf, Maria
    Skarke, Harald
    Wrase, Timm
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):
  • [3] Fano hypersurfaces and Calabi-Yau supermanifolds
    Garavuso, Richard S.
    Kreuzer, Maximilian
    Noll, Alexander
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (03):
  • [4] Neural network approximations for Calabi-Yau metrics
    Jejjala, Vishnu
    Pena, Damian Kaloni Mayorga
    Mishra, Challenger
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [5] Calabi-Yau orbifolds and torus coverings
    Hanany, Amihay
    Jejjala, Vishnu
    Ramgoolam, Sanjaye
    Seong, Rak-Kyeong
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09):
  • [6] Calabi-Yau orbifolds and torus coverings
    Amihay Hanany
    Vishnu Jejjala
    Sanjaye Ramgoolam
    Rak-Kyeong Seong
    Journal of High Energy Physics, 2011
  • [7] Octonionic Calabi-Yau Theorem
    Alesker, Semyon
    Gordon, Peter V.
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)
  • [8] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Nam-Hoon Lee
    Journal of High Energy Physics, 2010
  • [9] DEGENERATIONS OF CALABI-YAU METRICS
    Tosatti, Valentino
    GEOMETRY AND PHYSICS IN CRACOW, 2011, 4 (03): : 495 - 505
  • [10] ON COLLAPSING CALABI-YAU FIBRATIONS
    Li, Yang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 117 (03) : 451 - 483