A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrodinger Equation

被引:11
作者
Ostermann, Alexander [1 ]
Yao, Fangyan [2 ]
机构
[1] Univ Innsbruck, Dept Math, Technikerstr 13, A-6020 Innsbruck, Austria
[2] South China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
关键词
Low regularity; Nonlinear Schrodinger equation; Fully discrete; Fast Fourier transform; SPLITTING METHODS;
D O I
10.1007/s10915-022-01786-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the solution of the one dimensional cubic nonlinear Schrodinger equation on the torus, we propose and analyze a fully discrete low-regularity integrator. The considered scheme is explicit. Its implementation relies on the fast Fourier transform with a complexity of O(N log N) operations per time step, where N denotes the degrees of freedom in the spatial discretization. We prove that the newscheme provides anO(tau(3/2 gamma-1/2-epsilon)+N-gamma) error bound in L-2 for any initial data in H-gamma, 1/2 < gamma <= 1, where tau denotes the temporal step size. Numerical examples illustrate this convergence behavior.
引用
收藏
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 1993, Geom. Funct. Anal.
[2]   Order estimates in time of splitting methods for the nonlinear Schrodinger equation [J].
Besse, C ;
Bidégaray, B ;
Descombes, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) :26-40
[3]  
Faou E, 2012, ZUR LECT ADV MATH, P1, DOI 10.4171/100
[4]   Error bounds for exponential operator splittings [J].
Jahnke, T ;
Lubich, C .
BIT NUMERICAL MATHEMATICS, 2000, 40 (04) :735-744
[5]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[6]   A FOURIER INTEGRATOR FOR THE CUBIC NONLINEAR SCHRODINGER EQUATION WITH ROUGH INITIAL DATA [J].
Knoeller, Marvin ;
Ostermann, Alexander ;
Schratz, Katharina .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) :1967-1986
[7]   A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrodinger equation [J].
Li, Buyang ;
Wu, Yifei .
NUMERISCHE MATHEMATIK, 2021, 149 (01) :151-183
[8]   On splitting methods for Schrodinger-Poisson and cubic nonlinear Schrodinger equations [J].
Lubich, Christian .
MATHEMATICS OF COMPUTATION, 2008, 77 (264) :2141-2153
[9]  
Ostermann A., IN PRESS
[10]   Error estimates of a Fourier integrator for the cubic Schrodinger equation at low regularity [J].
Ostermann, Alexander ;
Rousset, Frederic ;
Schratz, Katharina .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2021, 21 (03) :725-765