Transport coefficients for the shear dynamo problem at small Reynolds numbers

被引:23
作者
Singh, Nishant K. [1 ]
Sridhar, S. [2 ]
机构
[1] Raman Res Inst, Bangalore 560080, Karnataka, India
[2] Indian Inst Sci, Joint Astron Programme, Bangalore 560012, Karnataka, India
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 05期
关键词
MEAN-FIELD DYNAMOS;
D O I
10.1103/PhysRevE.83.056309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We build on the formulation developed in S. Sridhar and N. K. Singh [J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients alpha(il) and eta(iml) are derived. We prove that when the velocity field is nonhelical, the transport coefficient alpha(il) vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X-3 and time tau; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Radler, M. Rheinhardt, and P. J. Kapyla [Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor eta(ij) (tau). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter.
引用
收藏
页数:10
相关论文
共 17 条
[1]   Magnetic diffusivity tensor and dynamo [J].
Brandenburg, A. ;
Raedler, K. -H. ;
Rheinhardt, M. ;
Kapyla, P. J. .
ASTROPHYSICAL JOURNAL, 2008, 676 (01) :740-751
[2]   Astrophysical magnetic fields and nonlinear dynamo theory [J].
Brandenburg, A ;
Subramanian, K .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 417 (1-4) :1-209
[3]   Large-Scale Dynamo Action Driven by Velocity Shear and Rotating Convection [J].
Hughes, David W. ;
Proctor, Michael R. E. .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)
[4]   Large-scale dynamos in turbulent convection with shear [J].
Kapyla, P. J. ;
Korpi, M. J. ;
Brandenburg, A. .
ASTRONOMY & ASTROPHYSICS, 2008, 491 (02) :353-362
[5]   Alpha effect and turbulent diffusion from convection [J].
Kapyla, P. J. ;
Korpi, M. J. ;
Brandenburg, A. .
ASTRONOMY & ASTROPHYSICS, 2009, 500 (02) :633-646
[6]  
Krause F., 1971, ERGEBNISSE PLASMAPHY, V2, P2
[7]  
Krause F., 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory, V1st
[8]   DYNAMO EFFICIENCY WITH SHEAR IN HELICAL TURBULENCE [J].
Leprovost, Nicolas ;
Kim, Eun-jin .
ASTROPHYSICAL JOURNAL LETTERS, 2009, 696 (02) :L125-L128
[9]  
Moffatt H. K., 1978, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Monographs on Mechanics and Applied Mathematics
[10]   Mean electromotive force due to turbulence of a conducting fluid in the presence of mean flow [J].
Raedler, Karl-Heinz ;
Stepanov, Rodion .
PHYSICAL REVIEW E, 2006, 73 (05)