Large-scale neural recordings call for new insights to link brain and behavior

被引:130
作者
Urai, Anne E. [1 ,2 ]
Doiron, Brent [3 ]
Leifer, Andrew M. [4 ]
Churchland, Anne K. [1 ,5 ]
机构
[1] Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA
[2] Leiden Univ, Cognit Psychol Unit, Leiden, Netherlands
[3] Univ Chicago, Chicago, IL 60637 USA
[4] Princeton Univ, Princeton, NJ 08544 USA
[5] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
CELLULAR RESOLUTION; CORTICAL ACTIVITY; DIMENSIONALITY REDUCTION; CORRELATED VARIABILITY; NEURONAL-ACTIVITY; NETWORK MODELS; SINGLE-NEURON; DYNAMICS; IDENTIFICATION; COMPUTATIONS;
D O I
10.1038/s41593-021-00980-9
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuroscientists can measure activity from more neurons than ever before, garnering new insights and posing challenges to traditional theoretical frameworks. New frameworks may help researchers use these observations to shed light on brain function. Neuroscientists today can measure activity from more neurons than ever before, and are facing the challenge of connecting these brain-wide neural recordings to computation and behavior. In the present review, we first describe emerging tools and technologies being used to probe large-scale brain activity and new approaches to characterize behavior in the context of such measurements. We next highlight insights obtained from large-scale neural recordings in diverse model systems, and argue that some of these pose a challenge to traditional theoretical frameworks. Finally, we elaborate on existing modeling frameworks to interpret these data, and argue that the interpretation of brain-wide neural recordings calls for new theoretical approaches that may depend on the desired level of understanding. These advances in both neural recordings and theory development will pave the way for critical advances in our understanding of the brain.
引用
收藏
页码:11 / 19
页数:9
相关论文
共 153 条
  • [1] The effect of correlated variability on the accuracy of a population code
    Abbott, LF
    Dayan, P
    [J]. NEURAL COMPUTATION, 1999, 11 (01) : 91 - 101
  • [2] Abeles M., 1991, Corticonics: Neural Circuits of the Cerebral Cortex
  • [3] Standardized and reproducible measurement of decision-making in mice
    Aguillon-Rodriguez, Valeria
    Angelaki, Dora
    Bayer, Hannah
    Bonacchi, Niccolo
    Carandini, Matteo
    Cazettes, Fanny
    Chapuis, Gaelle
    Churchland, Anne K.
    Dan, Yang
    Dewitt, Eric
    Faulkner, Mayo
    Forrest, Hamish
    Haetzel, Laura
    Hausser, Michael
    Hofer, Sonja B.
    Hu, Fei
    Khanal, Anup
    Krasniak, Christopher
    Laranjeira, Ines
    Mainen, Zachary F.
    Meijer, Guido
    Miska, Nathaniel J.
    Mrsic-Flogel, Thomas D.
    Murakami, Masayoshi
    Noel, Jean-Paul
    Pan-Vazquez, Alejandro
    Rossant, Cyrille
    Sanders, Joshua
    Socha, Karolina
    Terry, Rebecca
    Urai, Anne E.
    Vergara, Hernando
    Wells, Miles
    Wilson, Christian J.
    Witten, Ilana B.
    Wool, Lauren E.
    Zador, Anthony M.
    [J]. ELIFE, 2021, 10
  • [4] All the light that we can see: a new era in miniaturized microscopy
    Aharoni, Daniel
    Khakh, Baljit S.
    Silva, Alcino J.
    Golshani, Peyman
    [J]. NATURE METHODS, 2019, 16 (01) : 11 - 13
  • [5] Ahrens MB, 2013, NAT METHODS, V10, P413, DOI [10.1038/NMETH.2434, 10.1038/nmeth.2434]
  • [6] Fast near-whole-brain imaging in adult Drosophila during responses to stimuli and behavior
    Aimon, Sophie
    Katsuki, Takeo
    Jia, Tongqiu
    Grosenick, Logan
    Broxton, Michael
    Deisseroth, Karl
    Sejnowski, Terrence J.
    Greenspan, Ralph J.
    [J]. PLOS BIOLOGY, 2019, 17 (02)
  • [7] Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex
    Amit, DJ
    Brunel, N
    [J]. CEREBRAL CORTEX, 1997, 7 (03) : 237 - 252
  • [8] Prefrontal cortex exhibits multidimensional dynamic encoding during decision-making
    Aoi, Mikio C.
    Mante, Valerio
    Pillow, Jonathan W.
    [J]. NATURE NEUROSCIENCE, 2020, 23 (11) : 1410 - +
  • [9] Neural correlations, population coding and computation
    Averbeck, BB
    Latham, PE
    Pouget, A
    [J]. NATURE REVIEWS NEUROSCIENCE, 2006, 7 (05) : 358 - 366
  • [10] From the connectome to brain function
    Bargmann, Cornelia I.
    Marder, Eve
    [J]. NATURE METHODS, 2013, 10 (06) : 483 - 490