Direct and inverse spectral theory of one-dimensional Schrodinger operators with measures

被引:23
作者
Ben Amor, A [1 ]
Remling, C [1 ]
机构
[1] Univ Osnabruck, Fachbereich Math Informat, D-49069 Osnabruck, Germany
关键词
Schrodinger operator; spectral measure;
D O I
10.1007/s00020-004-1352-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a direct and rather elementary method for defining and analyzing one-dimensional Schrodinger operators H = -d(2)/dx(2) + mu with measures as potentials. The basic idea is to let the (suitably interpreted) equation -f" + mu f = zf take center stage. We show that the basic results from direct and inverse spectral theory then carry over to Schrodinger operators with measures.
引用
收藏
页码:395 / 417
页数:23
相关论文
共 11 条
[1]  
ALBEVERIO A, 1988, SOLVABLE MODELS QUAN
[2]   SCHRODINGER-OPERATORS WITH SINGULAR INTERACTIONS [J].
BRASCHE, JF ;
EXNER, P ;
KUPERIN, YA ;
SEBA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (01) :112-139
[3]   Singular Schrodinger operators as limits of point interaction Hamiltonians [J].
Brasche, JF ;
Figari, R ;
Teta, A .
POTENTIAL ANALYSIS, 1998, 8 (02) :163-178
[4]  
Coddington N., 1955, THEORY ORDINARY DIFF
[5]  
DEBRANGES L, 1968, HILBERT SPACES ENTIR
[6]  
Donoghue W. F., 1974, Die Grundlehren der mathematischen Wissenschaften, V207
[7]  
GESZTESY F, 1985, J REINE ANGEW MATH, V362, P28
[8]   Spectral asymptotics for Schrodinger operators with periodic point interactions [J].
Kurasov, P ;
Larson, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (01) :127-148
[9]  
Levitan BM, 1991, STURM LIOUVILLE DIRA
[10]   Schrodinger operators and de Branges spaces [J].
Remling, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (02) :323-394