Integrating feature maps and competitive layer architectures for motion segmentation

被引:2
|
作者
Steffen, Jan [1 ]
Pardowitz, Michael [1 ,2 ]
Steil, Jochen J. [2 ]
Ritter, Helge [1 ,2 ]
机构
[1] Univ Bielefeld, Neuroinformat Grp, Fac Technol, D-4800 Bielefeld, Germany
[2] Univ Bielefeld, Res Inst Cognit & Robot CoR Lab, D-4800 Bielefeld, Germany
关键词
Neural competition; Motion segmentation; Architecture; Structured manifolds; Unsupervised Kernel Regression; UKR; Competitive Layer Model; CLM; FEATURE BINDING; NETWORKS; MODEL;
D O I
10.1016/j.neucom.2010.11.028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a generic approach to integrate feature maps with a competitive layer architecture to enable segmentation by a competitive neural dynamics specified in terms of the latent space mappings constructed by the feature maps. We demonstrate the underlying ideas for the case of motion segmentation, using a system that employs Unsupervised Kernel Regression (UKR) for the creation of the feature maps, and the Competitive Layer Model (CLM) for the competitive layer architecture. The UKR feature maps hold learned representations of a set of candidate motions and the CLM dynamics, working on features defined in the UKR domain, implements the segmentation of observed trajectory data according to the competing candidates. We also demonstrate how the introduction of an additional layer can provide the system with a parametrizable rejection mechanism for previously unknown observations. The evaluation on trajectories describing four different letters yields improved classification results compared to our previous, pure manifold approach. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1372 / 1381
页数:10
相关论文
共 20 条
  • [1] Feature matching and segmentation in motion perception
    Scott-Samuel, NE
    Georgeson, MA
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1999, 266 (1435) : 2289 - 2294
  • [2] Layered Motion Segmentation with a Competitive Recurrent Network
    Eggert, Julian
    Deigmoeller, Joerg
    Willert, Volker
    ARTIFICIAL NEURAL NETWORKS-ICANN 2010, PT II, 2010, 6353 : 124 - +
  • [3] Motion Segmentation and Tracking for Integrating Event Cameras
    Freeman, Andrew C.
    Burgess, Chris
    Mayer-Patel, Ketan
    MMSYS '21: PROCEEDINGS OF THE 2021 MULTIMEDIA SYSTEMS CONFERENCE, 2021, : 1 - 11
  • [4] A cross-layer approach for integrating security mechanisms in sensor networks architectures
    Roman, Rodrigo
    Lopez, Javier
    Najera, Pablo
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2011, 11 (02) : 267 - 276
  • [5] MotionRFCN: Motion Segmentation Using Consecutive Dense Depth Maps
    Liu, Yiling
    Wang, Hesheng
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2019, 11671 : 510 - 522
  • [6] ESSN: Enhanced Semantic Segmentation Network by Residual Concatenation of Feature Maps
    Kim, Dong Seop
    Arsalan, Muhammad
    Owais, Muhammad
    Park, Kang Ryoung
    IEEE ACCESS, 2020, 8 : 21363 - 21379
  • [7] Enhanced Local Subspace Affinity for feature-based motion segmentation
    Zappella, L.
    Llado, X.
    Provenzi, E.
    Salvi, J.
    PATTERN RECOGNITION, 2011, 44 (02) : 454 - 470
  • [8] Real-time motion segmentation of sparse feature points at any speed
    Pundlik, Shrinivas J.
    Birchfield, Stanley T.
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (03): : 731 - 742
  • [9] A Feature-based Approach for Dense Segmentation and Estimation of Large Disparity Motion
    Josh Wills
    Sameer Agarwal
    Serge Belongie
    International Journal of Computer Vision, 2006, 68 : 125 - 143
  • [10] Affine Motion Segmentation from Feature Point Trajectories using Rank Minimization
    Min, Yang
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4667 - 4670