Fast Forging: A new SPD method to synthesize Mg-based alloys for hydrogen storage

被引:22
|
作者
de Rango, Patricia [1 ,2 ]
Fruchart, Daniel [1 ,2 ]
Aptukov, Valery [3 ]
Skryabina, Nataliya [3 ]
机构
[1] CNRS, Inst Neel, BP 166, F-38042 Grenoble, France
[2] UGA, BP 166, F-38042 Grenoble, France
[3] Perm State Univ, 15 Bukireva, Perm 614990, Russia
关键词
Magnesium-nickel system; Severe plastic deformation; Alloying; Metal hydrides; MAGNESIUM; SORPTION; NI;
D O I
10.1016/j.ijhydene.2019.07.124
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnesium alloys and more especially the Mg2Ni compound remain of high interest for reversible hydrogen storage, in spite of high temperature and poor sorption kinetics. Conventionally the Mg-based hydrides are prepared as activated powders by using the High Energy Ball-Milling technique, as well involving some amounts of activating additives. We have developed the technique of Fast Forging (FF) of mixed Mg and Ni samples. Early results show that when processing at low or medium temperatures the FF process acts better as other Severe Plastic Deformation (SPD) techniques. When processing at a temperature high enough, the formation of a mixture of Mg and binary Mg2Ni was promptly achieved by FF. XRD and first hydrogenation kinetics illustrate well the two different sides of the FF-technique that can be compared to Ball-Milling and Mechanical Alloying procedures, respectively. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7912 / 7916
页数:5
相关论文
共 50 条
  • [1] Hydrogen Storage Properties of Mg-Ni Alloys Processed by Fast Forging
    de Rango, Patricia
    Wen, Jing
    Skryabina, Nataliya
    Laversenne, Laetitia
    Fruchart, Daniel
    Borges, Marielle
    ENERGIES, 2020, 13 (13)
  • [2] Mg-based metastable nano alloys for hydrogen storage
    Li, Bo
    Li, Jianding
    Zhao, Huajun
    Yu, Xueqing
    Shao, Huaiyu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) : 6007 - 6018
  • [3] Synthesis and hydrogen storage properties of Mg-based alloys
    Liang, G
    JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 370 (1-2) : 123 - 128
  • [4] Research progress in Mg-based hydrogen storage alloys
    Zhao, Dong-Liang
    Zhang, Yang-Huan
    RARE METALS, 2014, 33 (05) : 499 - 510
  • [5] Hydrogen storage by Mg-based nanocomposites
    Jurczyk, M.
    Nowak, M.
    Szajek, A.
    Jezierski, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (04) : 3652 - 3658
  • [6] Hydrogen Storage in Mg and Mg-Based Alloys and Composites Processed by Severe Plastic Deformation
    Leiva, D. R.
    Jorge, A. M., Jr.
    Ishikawa, T. T.
    Botta, W. J.
    MATERIALS TRANSACTIONS, 2019, 60 (08) : 1561 - 1570
  • [7] Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review
    Zhu, Min
    Lu, Yanshan
    Ouyang, Liuzhang
    Wang, Hui
    MATERIALS, 2013, 6 (10): : 4654 - 4674
  • [8] Hydrogen storage by direct electrochemical hydriding of Mg-based alloys
    Vojtech, D.
    Guhlova, P.
    Mort'anikova, M.
    Janik, P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 494 (1-2) : 456 - 462
  • [9] Hydrogen storage in binary and ternary Mg-based alloys: A comprehensive experimental study
    Kalisvaart, W. P.
    Harrower, C. T.
    Haagsma, J.
    Zahiri, B.
    Luber, E. J.
    Ophus, C.
    Poirier, E.
    Fritzsche, H.
    Mitlin, D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (05) : 2091 - 2103
  • [10] Progress in improving hydrogen storage properties of Mg-based materials
    Yang, Xinglin
    Lu, Xiaohui
    Zhang, Jiaqi
    Hou, Quanhui
    Zou, Junhu
    MATERIALS TODAY ADVANCES, 2023, 19