A new iterative algorithm for equilibrium and fixed point problems of nonexpansive mapping

被引:5
作者
Wang, Zi-Ming [1 ]
Su, Yongfu [2 ]
Cho, Sun Young [3 ]
Lou, Wandong [1 ]
机构
[1] Shandong Yingcai Univ, Dept Fdn, Jinan 250104, Peoples R China
[2] Tianjin Polytech Univ, Dept Math, Tianjin 300160, Peoples R China
[3] Gyeongsang Natl Univ, Dept Math, Jinju 660701, South Korea
基金
中国国家自然科学基金;
关键词
Nonexpansive mapping; Maximal monotone operator; Optimization problem; Equilibrium problem; Fixed point; VISCOSITY APPROXIMATION METHODS; STRONG-CONVERGENCE; ACCRETIVE OPERATOR; THEOREMS; WEAK;
D O I
10.1007/s10898-010-9596-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a new iterative algorithm involving nonexpansive mapping in Hilbert space is proposed and proved to be strongly convergent to a point which is simultaneously a fixed point of a nonexpansive mapping and a solution of an equilibrium problem. The results of the paper extend previous results, see, for instance, Takahashi and Takahashi (J Math Anal Appl 331:506-515, 2007), and other results in this field. Moreover, this algorithm is applied to find zeros of a maximal monotone operator and solve an optimization problem.
引用
收藏
页码:457 / 472
页数:16
相关论文
共 26 条
[1]  
Blum E., 1994, Math. Stud., V63, P127
[2]  
Brezis H., 1973, Operateurs Maximaux Monotones
[3]  
Chinchuluun A, 2008, SPRINGER SER OPTIM A, V17, P1, DOI 10.1007/978-0-387-77247-9
[4]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[5]  
Flam SD, 1997, MATH PROGRAM, V78, P29
[6]  
FLOUDAS CA, 2009, ENCY OPTIMIZATION, V34
[7]  
Giannessi F., 2002, EQUILIBRIUM PROBLEMS, V58
[8]   Weak and strong convergence of solutions to accretive operator inclusions and applications [J].
Kamimura, S ;
Takahashi, W .
SET-VALUED ANALYSIS, 2000, 8 (04) :361-374
[9]   Viscosity approximation methods for fixed-points problems [J].
Moudafi, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 241 (01) :46-55
[10]  
Moudafi A, 1999, LECT NOTES ECON MATH, V477, P187