Weighted Selberg orthogonality and uniqueness of factorization of automorphic L-functions

被引:15
作者
Liu, JY [1 ]
Ye, YB
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
基金
中国国家自然科学基金;
关键词
D O I
10.1515/form.2005.17.3.493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a weighted version of Selberg's orthogonality conjecture for automorphic L-functions attached to irreducible cuspidal representations of GL(m) over Q. Using this weighted orthogonality, we obtain the uniqueness of factorization of general L-functions. As a consequence, we prove that the L-function attached to an automorphic irreducible cuspidal representation of GL(m) over Q cannot be factored further.
引用
收藏
页码:493 / 512
页数:20
相关论文
共 22 条
[1]  
ARTHUR J, 1989, SIMPLE ALGEBRAS CHAN, V120
[2]   ON THE SELBERG CLASS OF DIRICHLET SERIES - SMALL DEGREES [J].
CONREY, JB ;
GHOSH, A .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (03) :673-693
[3]  
Davenport H., 1980, MULTIPLICATIVE NUMBE
[4]   Boundedness of automorphic L-functions in vertical strips [J].
Gelbart, S ;
Shahidi, F .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (01) :79-107
[5]  
GODEMENT R, 1972, LECT NOTES MATH, DOI DOI 10.1007/BFB0070263
[6]   RANKIN-SELBERG CONVOLUTIONS [J].
JACQUET, H ;
PIATETSKIISHAPIRO, II ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (02) :367-464
[7]   ON EULER PRODUCTS AND THE CLASSIFICATION OF AUTOMORPHIC-FORMS .2. [J].
JACQUET, H ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (04) :777-815
[8]   ON EULER PRODUCTS AND THE CLASSIFICATION OF AUTOMORPHIC REPRESENTATIONS .1. [J].
JACQUET, H ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (03) :499-558
[9]  
Kim H. H., REFINED ESTIMATES RA
[10]   Functoriality for the exterior square of GL4 and the symmetric fourth of GL2 [J].
Kim, HH ;
Ramakrishnan, D ;
Sarnak, P .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) :139-183