On the autocommutator subgroup and absolute centre of a group

被引:9
作者
Dietrich, Heiko [1 ]
Moravec, Primoz [2 ]
机构
[1] Univ Auckland, Dept Math, Auckland, New Zealand
[2] Univ Ljubljana, Dept Math, Ljubljana, Slovenia
关键词
Absolute centre; Autocommutator subgroup; Abelian groups; EXPONENTS; HOMOLOGY;
D O I
10.1016/j.jalgebra.2011.05.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if the quotient of a group by its absolute centre is locally finite of exponent n. then the exponent of its autocommutator subgroup is n-bounded, that is, bounded by a function depending only on n. If the group itself is locally finite, then its exponent is n-bounded as well. Under some extra assumptions, the exponent of its automorphism group is n-bounded. We determine the absolute centre and autocommutator subgroup for a large class of (infinite) abelian groups. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 16 条
[1]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[2]   Abelian groups as autocommutator groups [J].
Chis, Codruta ;
Chis, Mihai ;
Silberberg, Gheorghe .
ARCHIV DER MATHEMATIK, 2008, 90 (06) :490-492
[3]  
DIXON JD, 1967, P LOND MATH SOC, V17, P432
[4]   Capability, homology, and central series of a pair of groups [J].
Ellis, G .
JOURNAL OF ALGEBRA, 1996, 179 (01) :31-46
[5]   ON TORSION GROUPS WITH NILPOTENT AUTOMORPHISM-GROUPS [J].
FRANCIOSI, S ;
DEGIOVANNI, F .
COMMUNICATIONS IN ALGEBRA, 1986, 14 (10) :1909-1935
[6]  
FUCHS L, 1970, ABELIAN GROUPS, V1
[7]  
Hall P., 1958, Ill. J. Math., V2, P787
[8]   THE ABSOLUTE CENTER OF A GROUP [J].
HEGARTY, P .
JOURNAL OF ALGEBRA, 1994, 169 (03) :929-935
[9]  
Huppert B., 1967, Endliche Gruppen I
[10]   CO-HOMOLOGY AND STEINBERG GROUP [J].
LODAY, JL .
JOURNAL OF ALGEBRA, 1978, 54 (01) :178-202