Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend

被引:6
作者
Kukush, Alexander [1 ]
Lohvinenko, Stanislav [2 ]
Mishura, Yuliya [2 ]
Ralchenko, Kostiantyn [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Math Anal, 64-13,Volodymyrska St, UA-01601 Kiev, Ukraine
[2] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Stat & Actuarial Math, 64-13,Volodymyrska St, UA-01601 Kiev, Ukraine
关键词
Fractional Brownian motion; Wiener process; Mixed power variations; Strong consistency; Mixed model; Ergodic theorem; EQUITY WARRANTS; PRICING MODEL;
D O I
10.1007/s11203-021-09252-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the mixed fractional Brownian motion with trend of the form X-t = theta t + sigma W-t + kappa B-t(H), driven by a standard Brownian motion W and a fractional Brownian motion B-H with Hurst parameter H. We develop and compare two approaches to estimation of four unknown parameters theta, sigma, kappa and H by discrete observations. The first algorithm is more traditional: we estimate sigma, kappa and H using the quadratic variations, while the estimator of theta is obtained as a discretization of a continuous-time estimator of maximum likelihood type. This approach has several limitations, in particular, it assumes that H < 3/4, moreover, some estimators have too low rate of convergence. Therefore, we propose a new method for simultaneous estimation of all four parameters, which is based on the ergodic theorem. Finally, we compare two approaches by Monte Carlo simulations.
引用
收藏
页码:159 / 187
页数:29
相关论文
共 50 条
[31]   Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion [J].
Hu, Yaozhong ;
Nualart, David ;
Zhou, Hongjuan .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2019, 91 (08) :1067-1091
[32]   Fractional Brownian motion with two-variable Hurst exponent [J].
Almani, H. Maleki ;
Hosseini, S. M. ;
Tahmasebi, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 388
[33]   Fractional Brownian motion satisfies two-way crossing [J].
Peyre, Remi .
BERNOULLI, 2017, 23 (4B) :3571-3597
[34]   Rate of convergence of Euler approximations of solution to mixed stochastic differential equation involving Brownian motion and fractional Brownian motion [J].
Mishura, Yuliya S. ;
Shevchenko, Georgiy M. .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2011, 19 (04) :387-406
[35]   Estimation of the Hurst parameter for fractional Brownian motion using the CMARS method [J].
Yerlikaya-Ozkurt, F. ;
Vardar-Acar, C. ;
Yolcu-Okur, Y. ;
Weber, G. -W. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :843-850
[36]   Convergence rate of CLT for the estimation of Hurst parameter of fractional Brownian motion [J].
Kim, Yoon Tae ;
Park, Hyun Suk .
STATISTICS & PROBABILITY LETTERS, 2015, 105 :181-188
[37]   Wavelet Packets of Fractional Brownian Motion: Asymptotic Analysis and Spectrum Estimation [J].
Atto, Abdourrahmane Mahamane ;
Pastor, Dominique ;
Mercier, Gregoire .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) :4741-4753
[38]   Stability result for fractional neutral stochastic differential system driven by mixed fractional Brownian motion [J].
Dhanalakshmi, K. ;
Balasubramaniam, P. .
INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2021, 11 (5-6) :497-513
[39]   Option pricing in the illiquid markets under the mixed fractional Brownian motion model [J].
Ma, Pengcheng ;
Taghipour, Mehran ;
Cattani, Carlo .
CHAOS SOLITONS & FRACTALS, 2024, 182
[40]   Long-range dependent completely correlated mixed fractional Brownian motion [J].
Dufitinema, Josephine ;
Shokrollahi, Foad ;
Sottinen, Tommi ;
Viitasaari, Lauri .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 170