Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend

被引:6
作者
Kukush, Alexander [1 ]
Lohvinenko, Stanislav [2 ]
Mishura, Yuliya [2 ]
Ralchenko, Kostiantyn [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Math Anal, 64-13,Volodymyrska St, UA-01601 Kiev, Ukraine
[2] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Stat & Actuarial Math, 64-13,Volodymyrska St, UA-01601 Kiev, Ukraine
关键词
Fractional Brownian motion; Wiener process; Mixed power variations; Strong consistency; Mixed model; Ergodic theorem; EQUITY WARRANTS; PRICING MODEL;
D O I
10.1007/s11203-021-09252-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the mixed fractional Brownian motion with trend of the form X-t = theta t + sigma W-t + kappa B-t(H), driven by a standard Brownian motion W and a fractional Brownian motion B-H with Hurst parameter H. We develop and compare two approaches to estimation of four unknown parameters theta, sigma, kappa and H by discrete observations. The first algorithm is more traditional: we estimate sigma, kappa and H using the quadratic variations, while the estimator of theta is obtained as a discretization of a continuous-time estimator of maximum likelihood type. This approach has several limitations, in particular, it assumes that H < 3/4, moreover, some estimators have too low rate of convergence. Therefore, we propose a new method for simultaneous estimation of all four parameters, which is based on the ergodic theorem. Finally, we compare two approaches by Monte Carlo simulations.
引用
收藏
页码:159 / 187
页数:29
相关论文
共 50 条
[21]   Spectral characterization of the quadratic variation of mixed Brownian-fractional Brownian motion [J].
Azmoodeh E. ;
Valkeila E. .
Statistical Inference for Stochastic Processes, 2013, 16 (2) :97-112
[22]   Boundary non-crossing probabilities for fractional Brownian motion with trend [J].
Hashorva, Enkelejd ;
Mishura, Yuliya ;
Seleznjev, Oleg .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2015, 87 (06) :946-965
[23]   Maximum-likelihood estimators in the mixed fractional Brownian motion [J].
Xiao, Wei-Lin ;
Zhang, Wei-Guo ;
Zhang, Xi-Li .
STATISTICS, 2011, 45 (01) :73-85
[24]   Notes on the two-dimensional, fractional Brownian motion [J].
Baudoin, F ;
Nualart, D .
ANNALS OF PROBABILITY, 2006, 34 (01) :159-180
[25]   Order estimation for a fractional Brownian motion model of glucose control [J].
Panunzi, Simona ;
Borri, Alessandro ;
D'Orsi, Laura ;
De Gaetano, Andrea .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 127
[26]   Tempered fractional Brownian motion: Wavelet estimation, modeling and testing [J].
Boniece, B. Cooper ;
Didier, Gustavo ;
Sabzikar, Farzad .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 51 :461-509
[27]   BAYESIAN ESTIMATION OF DRIFT FRACTIONAL BROWNIAN MOTION AT DISCRETE OBSERVATIONS [J].
Xia, Leixin ;
Chen, Baojiang ;
Lai, Dejian .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
[28]   DRIFT PARAMETER ESTIMATION FOR A REFLECTED FRACTIONAL BROWNIAN MOTION BASED ON ITS LOCAL TIME [J].
Hu, Yaozhong ;
Lee, Chihoon .
JOURNAL OF APPLIED PROBABILITY, 2013, 50 (02) :592-597
[29]   Variance Estimation for Fractional Brownian Motions with Fixed Hurst Parameters [J].
Coeurjolly, Jean-Francois ;
Lee, Kichun ;
Vidakovic, Brani .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (08) :1845-1858
[30]   Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion [J].
Hu, Yaozhong ;
Nualart, David ;
Zhou, Hongjuan .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2019, 91 (08) :1067-1091