Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend

被引:6
作者
Kukush, Alexander [1 ]
Lohvinenko, Stanislav [2 ]
Mishura, Yuliya [2 ]
Ralchenko, Kostiantyn [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Math Anal, 64-13,Volodymyrska St, UA-01601 Kiev, Ukraine
[2] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Stat & Actuarial Math, 64-13,Volodymyrska St, UA-01601 Kiev, Ukraine
关键词
Fractional Brownian motion; Wiener process; Mixed power variations; Strong consistency; Mixed model; Ergodic theorem; EQUITY WARRANTS; PRICING MODEL;
D O I
10.1007/s11203-021-09252-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the mixed fractional Brownian motion with trend of the form X-t = theta t + sigma W-t + kappa B-t(H), driven by a standard Brownian motion W and a fractional Brownian motion B-H with Hurst parameter H. We develop and compare two approaches to estimation of four unknown parameters theta, sigma, kappa and H by discrete observations. The first algorithm is more traditional: we estimate sigma, kappa and H using the quadratic variations, while the estimator of theta is obtained as a discretization of a continuous-time estimator of maximum likelihood type. This approach has several limitations, in particular, it assumes that H < 3/4, moreover, some estimators have too low rate of convergence. Therefore, we propose a new method for simultaneous estimation of all four parameters, which is based on the ergodic theorem. Finally, we compare two approaches by Monte Carlo simulations.
引用
收藏
页码:159 / 187
页数:29
相关论文
共 50 条
[1]   Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend [J].
Alexander Kukush ;
Stanislav Lohvinenko ;
Yuliya Mishura ;
Kostiantyn Ralchenko .
Statistical Inference for Stochastic Processes, 2022, 25 :159-187
[2]   Parameter estimation for fractional mixed fractional Brownian motion based on discrete observations [J].
Ralchenko, Kostiantyn ;
Yakovliev, Mykyta .
MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2024, 11 (01) :1-29
[3]   Asymptotic Normality of Parameter Estimators for Mixed Fractional Brownian Motion with Trend [J].
Ralchenko, Kostiantyn ;
Yakovliev, Mykyta .
AUSTRIAN JOURNAL OF STATISTICS, 2023, 52 :127-148
[4]   Nonparametric estimation of trend for stochastic differential equations driven by fractional Brownian motion [J].
Mishra M.N. ;
Prakasa Rao B.L.S. .
Statistical Inference for Stochastic Processes, 2011, 14 (2) :101-109
[5]   Drawdown and Drawup for Fractional Brownian Motion with Trend [J].
Long Bai ;
Peng Liu .
Journal of Theoretical Probability, 2019, 32 :1581-1612
[6]   Drawdown and Drawup for Fractional Brownian Motion with Trend [J].
Bai, Long ;
Liu, Peng .
JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (03) :1581-1612
[7]   Estimation of parameters of SDE driven by fractional Brownian motion with polynomial drift [J].
Kubilius, K. ;
Skorniakov, V. ;
Melichov, D. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (10) :1954-1969
[8]   Some It Formulas with Respect to Mixed Fractional Brownian Motion and Brownian Motion [J].
舒慧生 ;
阚秀 ;
周海涛 .
Journal of Donghua University(English Edition), 2010, 27 (04) :530-534
[9]   Fractional Brownian motion and parameter estimation [J].
Janak, Josef .
34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, :359-364
[10]   Nonparametric estimation of trend for SDEs with delay driven by a fractional brownian motion with small noise [J].
Rao, B. L. S. Prakasa .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2022, 40 (06) :967-977