Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend

被引:6
作者
Kukush, Alexander [1 ]
Lohvinenko, Stanislav [2 ]
Mishura, Yuliya [2 ]
Ralchenko, Kostiantyn [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Math Anal, 64-13,Volodymyrska St, UA-01601 Kiev, Ukraine
[2] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Stat & Actuarial Math, 64-13,Volodymyrska St, UA-01601 Kiev, Ukraine
关键词
Fractional Brownian motion; Wiener process; Mixed power variations; Strong consistency; Mixed model; Ergodic theorem; EQUITY WARRANTS; PRICING MODEL;
D O I
10.1007/s11203-021-09252-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the mixed fractional Brownian motion with trend of the form X-t = theta t + sigma W-t + kappa B-t(H), driven by a standard Brownian motion W and a fractional Brownian motion B-H with Hurst parameter H. We develop and compare two approaches to estimation of four unknown parameters theta, sigma, kappa and H by discrete observations. The first algorithm is more traditional: we estimate sigma, kappa and H using the quadratic variations, while the estimator of theta is obtained as a discretization of a continuous-time estimator of maximum likelihood type. This approach has several limitations, in particular, it assumes that H < 3/4, moreover, some estimators have too low rate of convergence. Therefore, we propose a new method for simultaneous estimation of all four parameters, which is based on the ergodic theorem. Finally, we compare two approaches by Monte Carlo simulations.
引用
收藏
页码:159 / 187
页数:29
相关论文
共 26 条
[1]  
Abramowitz Milton, 1948, Handbook of mathematical functions with formulas, graphs, and mathematical tables, V55
[2]  
Cai C, 2012, SMCURE FIT SEMIPARAM
[3]   Arbitrage in fractional Brownian motion models [J].
Cheridito, P .
FINANCE AND STOCHASTICS, 2003, 7 (04) :533-553
[4]   Mixed fractional Brownian motion [J].
Cheridito, P .
BERNOULLI, 2001, 7 (06) :913-934
[5]   Specification analysis of affine term structure models [J].
Dai, Q ;
Singleton, KJ .
JOURNAL OF FINANCE, 2000, 55 (05) :1943-1978
[6]  
Ding Z., 1993, J EMPIR FINANC, V1, P83, DOI [https://doi.org/10.1016/0927-5398(93)90006-D, DOI 10.1016/0927-5398(93)90006-D]
[7]  
DOZZI M., 2015, Stat. Inference Stoch. Process., V18, P151, DOI [10.1007/s11203-014-9106-5, DOI 10.1007/S11203-014-9106-5]
[8]   Maximum likelihood estimators from discrete data modeled by mixed fractional Brownian motion with application to the Nordic stock markets [J].
Dufitinema, Josephine ;
Pynnonen, Seppo ;
Sottinen, Tommi .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (09) :5264-5287
[9]  
FERNIQUE X, 1970, CR ACAD SCI A MATH, V270, P1698
[10]   Mixed fractional Brownian motion: some related questions for computer network traffic modeling [J].
Filatova, Daria .
ICSES 2008 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS, CONFERENCE PROCEEDINGS, 2008, :393-396