Lanosterol synthase catalyzes the polycyclization reaction of (3S)-2,3-oxidosqualene (1) into tetracyclic lanosterol 2 by folding 1 in a chair-boat-chair-chair conformation. 27-Nor- and 29-noroxidosqaulenes (7 and 8, respectively) were incubated with this enzyme to investigate the role of the methyl groups on 1 for the polycyclization cascade. Compound 7 afforded two enzymatic products, namely, 30-norlanosterol (12) and 26-normalabaricatriene (13; 12/13 9:1), which were produced through the normal chair-boat-chair-chair conformation and an atypical chair-chair-boat conformation, respectively. Compound 8 gave two products 14 and 15 (14/15 4:5), which were generated by the normal and the unusual polycyclization pathways through a chair-chair-boat-chair conformation, respectively. It is remarkable that the twist-boat structure for the B-ring formation was changed to an energetically favored chair structure for the generation of 15. Surprisingly, 14 and 15 consisted of a novel 6,6,6,6-fused tetracyclic ring system, thus differing from the 6,6,6,5-fused lanosterol skeleton. Together with previous results, we conclude that the methyl-29 group is critical to the correct folding of 1, with lesser contributions from the other branched methyl groups, such as methyl-26, -27, and -28. Furthermore, we demonstrate that the methyl-29 group has a crucial role in the formation of the five-membered D ring of the lanosterol scaffold.