Critical Properties of the Half-Filled Hubbard Model in Three Dimensions

被引:103
作者
Rohringer, G. [1 ]
Toschi, A. [1 ]
Katanin, A. [2 ,3 ]
Held, K. [1 ]
机构
[1] Vienna Univ Technol, Inst Solid State Phys, A-1040 Vienna, Austria
[2] Inst Met Phys, Ekaterinburg 620099, Russia
[3] Ural Fed Univ, Ekaterinburg 620002, Russia
基金
奥地利科学基金会;
关键词
FERROMAGNETISM;
D O I
10.1103/PhysRevLett.107.256402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By means of the dynamical vertex approximation (D Gamma A) we include spatial correlations on all length scales beyond the dynamical mean-field theory (DMFT) for the half-filled Hubbard model in three dimensions. The most relevant changes due to nonlocal fluctuations are (i) a deviation from the mean-field critical behavior with the same critical exponents as for the three dimensional Heisenberg (anti) ferromagnet and (ii) a sizable reduction of the Neel temperature (T-N) by similar to 30% for the onset of antiferromagnetic order. Finally, we give a quantitative estimate of the deviation of the spectra between D Gamma A and DMFT in different regions of the phase diagram.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Dual fermion approach to susceptibility of correlated lattice fermions [J].
Brener, S. ;
Hafermann, H. ;
Rubtsov, A. N. ;
Katsnelson, M. I. ;
Lichtenstein, A. I. .
PHYSICAL REVIEW B, 2008, 77 (19)
[2]   Kinks in the dispersion of strongly correlated electrons [J].
Byczuk, K. ;
Kollar, M. ;
Held, K. ;
Yang, Y. -F. ;
Nekrasov, I. A. ;
Pruschke, Th. ;
Vollhardt, D. .
NATURE PHYSICS, 2007, 3 (03) :168-171
[3]  
Collins M. F., 1989, Magnetic Critical Scattering
[4]   Thermodynamics of the 3D Hubbard Model on Approaching the Neel Transition [J].
Fuchs, Sebastian ;
Gull, Emanuel ;
Pollet, Lode ;
Burovski, Evgeni ;
Kozik, Evgeny ;
Pruschke, Thomas ;
Troyer, Matthias .
PHYSICAL REVIEW LETTERS, 2011, 106 (03)
[5]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[6]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483
[7]   Submatrix updates for the continuous-time auxiliary-field algorithm [J].
Gull, Emanuel ;
Staar, Peter ;
Fuchs, Sebastian ;
Nukala, Phani ;
Summers, Michael S. ;
Pruschke, Thomas ;
Schulthess, Thomas C. ;
Maier, Thomas .
PHYSICAL REVIEW B, 2011, 83 (07)
[8]   EFFECT OF CORRELATION ON FERROMAGNETISM OF TRANSITION METALS [J].
GUTZWILLER, MC .
PHYSICAL REVIEW LETTERS, 1963, 10 (05) :159-&
[9]  
Held K, 2008, PROG THEOR PHYS SUPP, P117, DOI 10.1143/PTPS.176.117