DTT: a divertor tokamak test facility for the study of the power exhaust issues in view of DEMO

被引:41
作者
Albanese, R. [1 ]
机构
[1] Univ Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
关键词
plasma facing components; divertor; tokamak; SIMILARITY; ITER;
D O I
10.1088/0029-5515/57/1/016010
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In parallel with the programme to optimize the operation with a conventional divertor based on detached conditions to be tested on the ITER device, a project has been launched to investigate alternative power exhaust solutions for DEMO, aimed at the definition and the design of a divertor tokamak test facility (DTT). The DTT project proposal refers to a set of parameters selected so as to have edge conditions as close as possible to DEMO, while remaining compatible with DEMO bulk plasma performance in terms of dimensionless parameters and given constraints. The paper illustrates the DTT project proposal, referring to a 6 MA plasma with a major radius of 2.15 m, an aspect ratio of about 3, an elongation of 1.6-1.8, and a toroidal field of 6 T. This selection will guarantee sufficient flexibility to test a wide set of divertor concepts and techniques to cope with large heat loads, including conventional tungsten divertors; liquid metal divertors; both conventional and advanced magnetic configurations (including single null, snow flake, quasi snow flake, X divertor, double null); internal coils for strike point sweeping and control of the width of the scrape-off layer in the divertor region; and radiation control. The Poloidal Field system is planned to provide a total flux swing of more than 35 Vs, compatible with a pulse length of more than 100 s. This is compatible with the mission of studying the power exhaust problem and is obtained using superconducting coils. Particular attention is dedicated to diagnostics and control issues, especially those relevant for plasma control in the divertor region, designed to be as compatible as possible with a DEMO-like environment. The construction is expected to last about seven years, and the selection of an Italian site would be compatible with a budget of 500 M(sic).
引用
收藏
页数:13
相关论文
共 17 条
[1]  
Albanese R., WPDTT2 PERIODIC REPO
[2]  
Albanese R., 2015, 1 IAEA TECHN M DIV C
[3]   EAST alternative magnetic configurations: modelling and first experiments [J].
Calabro, G. ;
Xiao, B. J. ;
Chen, S. L. ;
Duan, Y. M. ;
Guo, Y. ;
Li, J. G. ;
Liu, L. ;
Luo, Z. P. ;
Wang, L. ;
Xu, J. ;
Zhang, B. ;
Albanese, R. ;
Ambrosino, R. ;
Crisanti, F. ;
Ridolfini, V. Pericoli ;
Villone, F. ;
Viola, B. ;
Barbato, L. ;
De Magistris, M. ;
De Tommasi, G. ;
Giovannozzi, E. ;
Mastrostefano, S. ;
Minucci, S. ;
Pironti, A. ;
Ramogida, G. ;
Tuccillo, A. A. ;
Zagorski, R. .
NUCLEAR FUSION, 2015, 55 (08)
[4]   UPDATE ON DESIGN OF THE ITER IN-VESSEL COILS [J].
Daly, E. F. ;
Ioki, K. ;
Loarte, A. ;
Martin, A. ;
Brooks, A. ;
Heitzenroeder, P. ;
Kalish, M. ;
Neumeyer, C. ;
Titus, P. ;
Zhai, Y. ;
Wu, Y. ;
Jin, H. ;
Long, F. ;
Song, Y. ;
Wang, Z. ;
Pillsbury, R. ;
Feng, J. ;
Bohm, T. ;
Sawan, M. ;
Preble, J. .
FUSION SCIENCE AND TECHNOLOGY, 2013, 64 (02) :168-175
[5]   Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER [J].
Eich, T. ;
Leonard, A. W. ;
Pitts, R. A. ;
Fundamenski, W. ;
Goldston, R. J. ;
Gray, T. K. ;
Herrmann, A. ;
Kirk, A. ;
Kallenbach, A. ;
Kardaun, O. ;
Kukushkin, A. S. ;
LaBombard, B. ;
Maingi, R. ;
Makowski, M. A. ;
Scarabosio, A. ;
Sieglin, B. ;
Terry, J. ;
Thornton, A. .
NUCLEAR FUSION, 2013, 53 (09)
[6]   Similarity in divertor studies [J].
Hutchinson, IH ;
Vlases, GC .
NUCLEAR FUSION, 1996, 36 (06) :783-794
[7]  
Kadomtsev B. B., 1975, FIZ PLAZMY, V1, P531
[8]   ADX: a high field, high power density, advanced divertor and RF tokamak [J].
LaBombard, B. ;
Marmar, E. ;
Irby, J. ;
Terry, J. L. ;
Vieira, R. ;
Wallace, G. ;
Whyte, D. G. ;
Wolfe, S. ;
Wukitch, S. ;
Baek, S. ;
Beck, W. ;
Bonoli, P. ;
Brunner, D. ;
Doody, J. ;
Ellis, R. ;
Ernst, D. ;
Fiore, C. ;
Freidberg, J. P. ;
Golfinopoulos, T. ;
Granetz, R. ;
Greenwald, M. ;
Hartwig, Z. S. ;
Hubbard, A. ;
Hughes, J. W. ;
Hutchinson, I. H. ;
Kessel, C. ;
Kotschenreuther, M. ;
Leccacorvi, R. ;
Lin, Y. ;
Lipschultz, B. ;
Mahajan, S. ;
Minervini, J. ;
Mumgaard, R. ;
Nygren, R. ;
Parker, R. ;
Poli, F. ;
Porkolab, M. ;
Reinke, M. L. ;
Rice, J. ;
Rognlien, T. ;
Rowan, W. ;
Shiraiwa, S. ;
Terry, D. ;
Theiler, C. ;
Titus, P. ;
Umansky, M. ;
Valanju, P. ;
Walk, J. ;
White, A. ;
Wilson, J. R. .
NUCLEAR FUSION, 2015, 55 (05)
[9]   DIMENSIONLESS ENGINEERING VARIABLES FOR MEASURING THE ITER AND REACTOR RELEVANCE OF TOKAMAK EXPERIMENTS [J].
Lackner, K. .
FUSION SCIENCE AND TECHNOLOGY, 2008, 54 (04) :989-993
[10]  
Lackner K., 1994, Comments on Plasma Physics and Controlled Fusion, V15, P359