Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite

被引:74
|
作者
Sakthivel, Bhuvaneshwari [1 ]
Nammalvar, Gopalakrishnan [1 ]
机构
[1] Natl Inst Technol, Dept Phys, Thin Film Lab, Tiruchirappalli 620015, Tamil Nadu, India
关键词
Gas sensor; Hydrothermal method; Copper oxide; Graphene oxide; Selectivity; Stability; GAS-SENSING PERFORMANCE; NANOSTRUCTURES; NANOPARTICLES; OXIDATION;
D O I
10.1016/j.jallcom.2019.02.245
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Commercialization of a chemical sensor relies on the sensing performance, stability and selectivity for detecting gases at different environmental conditions. Here, we report ammonia sensors based on copper oxide (CuO) and reduced graphene oxide (rGO) nanocomposite with a hierarchical structure. The employed surfactant-free hydrothermal method for the sensing element synthesis is found to be efficient in yielding hierarchical nanoarchitectures. The synthesized CuO and rGO-CuO nanocomposite were characterized for structural, morphological, optical and surface adsorption properties. In order to understand the sensing properties, the printed sensors with pristine CuO and rGO-CuO composite were subjected to concentration, temperature and time-dependent ammonia sensing measurements. The rGO-CuO nanocomposite sensor showed an enhanced sensor response of 13 at room temperature (30 degrees C) and 30 at 300 degrees C, respectively which is a 10-fold increase as compared to pristine CuO based device. The selectivity experiments were carried out by exposing the sensor to ethanol, methanol, acetone, and ammonia. The sensor showed the highest response towards ammonia in comparison with other test gases. The observed sensing performance suggests the applicability of the present sensors to room temperature and elevated temperature operations. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:422 / 428
页数:7
相关论文
共 50 条
  • [41] Aerobic Oxidation of Isoeugenol to Vanillin with Copper Oxide Doped Reduced Graphene Oxide
    Bohre, Ashish
    Gupta, Dinesh
    Alam, Md. Imteyaz
    Sharma, Rakesh K.
    Saha, Basudeb
    CHEMISTRYSELECT, 2017, 2 (10): : 3129 - 3136
  • [42] Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm
    Guo, Zhiling
    Xie, Changjian
    Zhang, Peng
    Zhang, Junzhe
    Wang, Guohua
    He, Xiao
    Ma, Yuhui
    Zhao, Bin
    Zhang, Zhiyong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 580 : 1300 - 1308
  • [43] Copper oxide-graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water
    Zhang, Kaiqiang
    Suh, Jun Min
    Lee, Tae Hyung
    Cha, Joo Hwan
    Choi, Ji-Won
    Jang, Ho Won
    Varma, Rajender S.
    Shokouhimehr, Mohammadreza
    NANO CONVERGENCE, 2019, 6 (1)
  • [44] Preparation and antibacterial activity of graphene oxide/cuprous oxide/zinc oxide nanocomposite
    Li, Manna
    Chen, Zhaofeng
    Sun, Yu
    Wang, Fei
    Wu, Cao
    Xu, Jiang
    Zhang, Jianxun
    MATERIALS RESEARCH EXPRESS, 2021, 8 (12)
  • [45] Thermal reduced graphene oxide-based gas sensor for rapid detection of ammonia at room temperature
    Xiao, Xue
    Jin, Wei
    Tang, Cao
    Qi, Xin
    Li, Rui
    Zhang, Yi
    Zhang, Wusheng
    Yu, Xue
    Zhu, Xiaodong
    Ma, Yanqing
    Ma, Lei
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (27) : 11016 - 11028
  • [46] Graphene Oxide/Zinc Oxide Nanocomposite Displaying Selective Toxicity to Glioblastoma Cell Lines
    Jovito, Barbara L.
    Paterno, Leonardo G.
    Sales, Maria J. A.
    Gross, Marcos A.
    Silva, Luciano P.
    de Souza, Paulo
    Bao, Sonia N.
    ACS APPLIED BIO MATERIALS, 2021, 4 (01) : 829 - 843
  • [47] Electrochemical sensor based on Ni/reduced graphene oxide nanohybrids for selective detection of ascorbic acid
    Ren, Miao
    Kang, Xinyuan
    Li, Li
    Duan, Liping
    Liao, Fang
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2019, 40 (10) : 1516 - 1522
  • [48] A non-enzymatic glucose sensor based on the CuS nanoflakes-reduced graphene oxide nanocomposite
    Yan, Xiaoyi
    Gu, Yue
    Li, Cong
    Zheng, Bo
    Li, Yaru
    Zhang, Tingting
    Zhang, Zhiquan
    Yang, Ming
    ANALYTICAL METHODS, 2018, 10 (03) : 381 - 388
  • [49] Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode
    Mani, Veerappan
    Periasamy, Arun Prakash
    Chen, Shen-Ming
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 17 : 75 - 78
  • [50] Ammonia sensing properties of metal-organic frameworks-derived zinc oxide/reduced graphene oxide nanocomposite
    Wang, Dongyue
    Chi, Minghe
    Zhang, Dongzhi
    Wu, Di
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (06) : 4463 - 4472