The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis

被引:29
作者
Babour, Anna [1 ]
Shen, Qingtang [1 ]
Dos-Santos, Julien [1 ]
Murray, Struan [2 ]
Gay, Alexandre [1 ]
Challal, Drice [3 ]
Fasken, Milo [4 ]
Palancade, Benoit [3 ]
Corbett, Anita [4 ]
Libri, Domenico [3 ]
Mellor, Jane [2 ]
Dargemont, Catherine [1 ]
机构
[1] Univ Paris Diderot, Sorbonne Paris Cite, Hop St Louis, CNRS,UMR7212,INSERM,UMR944, 1 Ave Claude Vellefaux, F-75475 Paris, France
[2] Univ Oxford, Dept Biochem, South Parks Rd, Oxford OX1 3QU, England
[3] Univ Paris Diderot, Sorbonne Paris Cite, Inst Jacques Monod, CNRS, Batiment Buffon,15 Rue Helene Brion, F-75205 Paris, France
[4] Emory Univ, Sch Med, Dept Biochem, Atlanta, GA 30322 USA
关键词
MESSENGER-RNA EXPORT; UV CROSS-LINKING; SACCHAROMYCES-CEREVISIAE; NUCLEOSOME ORGANIZATION; GENE-EXPRESSION; COMPETENT MRNP; BUDDING YEAST; IN-VIVO; TRANSCRIPTION; GENOME;
D O I
10.1016/j.cell.2016.10.048
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.
引用
收藏
页码:1201 / +
页数:29
相关论文
共 74 条
  • [1] Loss of nuclear poly(A)-binding protein 1 causes defects in myogenesis and mRNA biogenesis
    Apponi, Luciano H.
    Leung, Sara W.
    Williams, Kathryn R.
    Valentini, Sandro R.
    Corbett, Anita H.
    Pavlath, Grace K.
    [J]. HUMAN MOLECULAR GENETICS, 2010, 19 (06) : 1058 - 1065
  • [2] Ubiquitin and assembly of export competent mRNP
    Babour, Anna
    Dargemont, Catherine
    Stutz, Francoise
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (06): : 521 - 530
  • [3] Transcriptome Maps of mRNP Biogenesis Factors Define Pre-mRNA Recognition
    Baejen, Carlo
    Torkler, Phillipp
    Gressel, Saskia
    Essig, Katharina
    Soeding, Johannes
    Cramer, Patrick
    [J]. MOLECULAR CELL, 2014, 55 (05) : 745 - 757
  • [4] Control of Transcript Variability in Single Mammalian Cells
    Battich, Nico
    Stoeger, Thomas
    Pelkmans, Lucas
    [J]. CELL, 2015, 163 (07) : 1596 - 1610
  • [5] Nucleosome Remodeling and Epigenetics
    Becker, Peter B.
    Workman, Jerry L.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, 5 (09):
  • [6] Coupling mRNA processing with transcription in time and space
    Bentley, David L.
    [J]. NATURE REVIEWS GENETICS, 2014, 15 (03) : 163 - 175
  • [7] IDENTIFICATION OF RNA HELICASE TARGET SITES BY UV CROSS-LINKING AND ANALYSIS OF cDNA
    Bohnsack, Markus T.
    Tollervey, David
    Granneman, Sander
    [J]. RNA HELICASES, 2012, 511 : 275 - 288
  • [8] Eukaryotic Stress Granules Are Cleared by Autophagy and Cdc48/VCP Function
    Buchan, J. Ross
    Kolaitis, Regina-Maria
    Taylor, J. Paul
    Parker, Roy
    [J]. CELL, 2013, 153 (07) : 1461 - 1474
  • [9] A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA protein Npl3p
    Burkard, KTD
    Butler, JS
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (02) : 604 - 616
  • [10] Nascent transcript sequencing visualizes transcription at nucleotide resolution
    Churchman, L. Stirling
    Weissman, Jonathan S.
    [J]. NATURE, 2011, 469 (7330) : 368 - +