Inferring the dynamical effects of stroke lesions through whole-brain modeling

被引:11
|
作者
Idesis, Sebastian [1 ]
Favaretto, Chiara [2 ,3 ]
V. Metcalf, Nicholas [4 ]
Griffis, Joseph C. [4 ]
Shulman, Gordon L. [4 ,5 ]
Corbetta, Maurizio [2 ,3 ,4 ,5 ,6 ,7 ]
Deco, Gustavo [1 ]
机构
[1] Pompeu Fabra Univ, Ctr Brain & Cognit CBC, Dept Informat Technol & Commun DT, Edif Merce Rodoreda, Carrer Trias i Fargas 25-27, Barcelona 08005, Spain
[2] Univ Padua, Padova Neurosci Ctr PNC, via Orus 2-B, I-35129 Padua, Italy
[3] Univ Padua, Dept Neurosci DNS, via Giustiniani 2, I-35128 Padua, Italy
[4] Washington Univ Sch Med, Dept Neurol, 660 S Euclid Ave, St. Louis, MO 63110 USA
[5] Washington Univ Sch Med, Dept Radiol, 660 S Euclid Ave, St. Louis, MO 63110 USA
[6] Biomed Fdn, Venetian Inst Mol Med VIMM, VIMM, via Orus 2, I-35129 Padua, Italy
[7] Inst Catalana Recerca I Estudis Avancats ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain
关键词
Dynamical effects; Generative model; Stroke; Structural disconnection; Whole-brain model; FUNCTIONAL CONNECTIVITY; NETWORK; INTEGRATION; SEGREGATION; ORGANIZATION; ATTENTION; DEFICITS; ATLAS; MOTOR; HUBS;
D O I
10.1016/j.nicl.2022.103233
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Understanding the effect of focal lesions (stroke) on brain structure-function traditionally relies on behavioral analyses and correlation with neuroimaging data. Here we use structural disconnection maps from individual lesions to derive a causal mechanistic generative whole-brain model able to explain both functional connectivity alterations and behavioral deficits induced by stroke. As compared to other models that use only the local lesion information, the similarity to the empirical fMRI connectivity increases when the widespread structural disconnection information is considered. The presented model classifies behavioral impairment severity with higher accuracy than other types of information (e.g.: functional connectivity). We assessed topological measures that characterize the functional effects of damage. With the obtained results, we were able to understand how network dynamics change emerge, in a nontrivial way, after a stroke injury of the underlying complex brain system. This type of modeling, including structural disconnection information, helps to deepen our understanding of the underlying mechanisms of stroke lesions.
引用
收藏
页数:17
相关论文
共 47 条
  • [21] Differential Features of Culprit Intracranial Atherosclerotic Lesions: A Whole-Brain Vessel Wall Imaging Study in Patients With Acute Ischemic Stroke
    Wu, Fang
    Ma, Qingfeng
    Song, Haiqing
    Guo, Xiuhai
    Diniz, Marcio A.
    Song, Shlee S.
    Gonzalez, Nestor R.
    Bi, Xiaoming
    Ji, Xunming
    Li, Debiao
    Yang, Qi
    Fan, Zhaoyang
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (15):
  • [22] Viscous dynamics associated with hypoexcitation and structural disintegration in neurodegeneration via generative whole-brain modeling
    Coronel-Oliveros, Carlos
    Gomez, Raul Gonzalez
    Ranasinghe, Kamalini
    Sainz-Ballesteros, Agustin
    Legaz, Agustina
    Fittipaldi, Sol
    Cruzat, Josephine
    Herzog, Ruben
    Yener, Gorsev
    Parra, Mario
    Aguillon, David
    Lopera, Francisco
    Santamaria-Garcia, Hernando
    Moguilner, Sebastian
    Medel, Vicente
    Orio, Patricio
    Whelan, Robert
    Tagliazucchi, Enzo
    Prado, Pavel
    Ibanez, Agustin
    ALZHEIMERS & DEMENTIA, 2024, 20 (05) : 3228 - 3250
  • [23] The most relevant human brain regions for functional connectivity: Evidence for a dynamical workspace of binding nodes from whole-brain computational modelling
    Deco, Gustavo
    Van Hartevelt, Tim J.
    Fernandes, Henrique M.
    Stevner, Angus
    Kringelbach, Morten L.
    NEUROIMAGE, 2017, 146 : 197 - 210
  • [24] A mixed-modeling framework for analyzing multitask whole-brain network data
    Simpson, Sean L.
    Bahrami, Mohsen
    Laurienti, Paul J.
    NETWORK NEUROSCIENCE, 2019, 3 (02): : 307 - 324
  • [25] Unveiling whole-brain dynamics in normal aging through Hidden Markov Models
    Moretto, Manuela
    Silvestri, Erica
    Zangrossi, Andrea
    Corbetta, Maurizio
    Bertoldo, Alessandra
    HUMAN BRAIN MAPPING, 2022, 43 (03) : 1129 - 1144
  • [26] Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling
    Ponce-Alvarez, Adrian
    He, Biyu J.
    Hagmann, Patric
    Deco, Gustavo
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (08)
  • [27] Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
    Donnelly-Kehoe, Patricio
    Saenger, Victor M.
    Lisofsky, Nina
    Kuehn, Simone
    Kringelbach, Morten L.
    Schwarzbach, Jens
    Lindenberger, Ulman
    Deco, Gustavo
    HUMAN BRAIN MAPPING, 2019, 40 (10) : 2967 - 2980
  • [28] An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks
    Simpson, Sean L.
    Moussa, Malaak N.
    Laurienti, Paul J.
    NEUROIMAGE, 2012, 60 (02) : 1117 - 1126
  • [29] Axonal and Dendritic Morphology of Excitatory Neurons in Layer 2/3 Mouse Barrel Cortex Imaged Through Whole-Brain Two-Photon Tomography and Registered to a Digital Brain Atlas
    Liu, Yanqi
    Foustoukos, Georgios
    Crochet, Sylvain
    Petersen, Carl C. H.
    FRONTIERS IN NEUROANATOMY, 2022, 15
  • [30] Whole-brain magnetic resonance imaging of plaque burden and lenticulostriate arteries in patients with different types of stroke
    Wu, Fang
    Zhang, Qian
    Dong, Kai
    Duan, Jiangang
    Yang, Xiaoxu
    Wu, Ye
    Zhang, Ling
    Li, Debiao
    Fan, Zhaoyang
    Yang, Qi
    THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2019, 12