A computational inverse diffraction grating problem

被引:27
作者
Bao, Gang [3 ,4 ]
Li, Peijun [1 ]
Wu, Haijun [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[4] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
DOUBLY PERIODIC STRUCTURE; FINITE-ELEMENT-METHOD; PROFILE RECONSTRUCTION; UNIQUENESS THEOREMS; SCATTERING PROBLEMS; NUMERICAL-SOLUTION; BINARY GRATINGS; OPTIMAL-DESIGN; OPTICS; HYPOTHESIS;
D O I
10.1364/JOSAA.29.000394
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Consider the diffraction of a time-harmonic plane wave incident on a perfectly reflecting periodic surface. A continuation method on the wavenumber is developed for the inverse diffraction grating problem, which reconstructs the grating profile from measured reflected waves a constant distance away from the structure. Numerical examples are presented to show the validity and efficiency of the proposed method. (C) 2012 Optical Society of America
引用
收藏
页码:394 / 399
页数:6
相关论文
共 36 条
[31]   A high-order perturbation approach to profile reconstruction: I. Perfectly conducting gratings [J].
Ito, K ;
Reitich, F .
INVERSE PROBLEMS, 1999, 15 (04) :1067-1085
[32]   Singularities and Rayleigh's hypothesis for diffraction gratings [J].
Keller, JB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (03) :456-457
[33]   UNIQUENESS THEOREMS IN INVERSE SCATTERING-THEORY FOR PERIODIC STRUCTURES [J].
KIRSCH, A .
INVERSE PROBLEMS, 1994, 10 (01) :145-152
[34]   RAYLEIGH HYPOTHESIS AND A RELATED LEAST-SQUARES SOLUTION TO SCATTERING PROBLEMS FOR PERIODIC SURFACES AND OTHER SCATTERERS [J].
MILLAR, RF .
RADIO SCIENCE, 1973, 8 (8-9) :785-796
[35]   INTEGRAL-EQUATION METHODS IN A QUASI-PERIODIC DIFFRACTION PROBLEM FOR THE TIME-HARMONIC MAXWELL EQUATIONS [J].
NEDELEC, JC ;
STARLING, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (06) :1679-1701
[36]  
Petit R., 1980, TOPICS CURRENT PHYS, V22