Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage

被引:210
作者
Michalsky, R. [1 ,2 ,3 ]
Avram, A. M. [1 ]
Peterson, B. A. [1 ]
Pfromm, P. H. [1 ]
Peterson, A. A. [2 ]
机构
[1] Kansas State Univ, Dept Chem Engn, Manhattan, KS 66506 USA
[2] Brown Univ, Sch Engn, Providence, RI 02912 USA
[3] Swiss Fed Inst Technol, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; HYDROGEN STORAGE; LOW-TEMPERATURE; FUEL-CELL; WATER; REDUCTION; CO2; GENERATION; EFFICIENCY; NITROGEN;
D O I
10.1039/c5sc00789e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The activity of many heterogeneous catalysts is limited by strong correlations between activation energies and adsorption energies of reaction intermediates. Although the reaction is thermodynamically favourable at ambient temperature and pressure, the catalytic synthesis of ammonia (NH3), a fertilizer and chemical fuel, from N-2 and H-2 requires some of the most extreme conditions of the chemical industry. We demonstrate how ammonia can be produced at ambient pressure from air, water, and concentrated sunlight as renewable source of process heat via nitrogen reduction with a looped metal nitride, followed by separate hydrogenation of the lattice nitrogen into ammonia. Separating ammonia synthesis into two reaction steps introduces an additional degree of freedom when designing catalysts with desirable activation and adsorption energies. We discuss the hydrogenation of alkali and alkaline earth metal nitrides and the reduction of transition metal nitrides to outline a promoting role of lattice hydrogen in ammonia evolution. This is rationalized via electronic structure calculations with the activity of nitrogen vacancies controlling the redox-intercalation of hydrogen and the formation and hydrogenation of adsorbed nitrogen species. The predicted trends are confirmed experimentally with evolution of 56.3, 80.7, and 128 mu mol NH3 per mol metal per min at 1 bar and above 550 degrees C via reduction of Mn6N2.58 to Mn4N and hydrogenation of Ca3N2 and Sr2N to Ca2NH and SrH2, respectively.
引用
收藏
页码:3965 / 3974
页数:10
相关论文
共 67 条
  • [21] Bulk and surface electronic structure of the layered sub-nitrides Ca2N and Sr2N
    Fang, CM
    de Wijs, GA
    de Groot, RA
    Hintzen, HT
    de With, G
    [J]. CHEMISTRY OF MATERIALS, 2000, 12 (07) : 1847 - 1852
  • [22] Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts: In Situ XAS and DFT Study
    Friebel, Daniel
    Viswanathan, Venkatasubramanian
    Miller, Daniel J.
    Anniyev, Toyli
    Ogasawara, Hirohito
    Larsen, Ask H.
    O'Grady, Christopher P.
    Norskov, Jens K.
    Nilsson, Anders
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (23) : 9664 - 9671
  • [23] Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System
    Furler, Philipp
    Scheffe, Jonathan
    Gorbar, Michal
    Moes, Louis
    Vogt, Ulrich
    Steinfeld, Aldo
    [J]. ENERGY & FUELS, 2012, 26 (11) : 7051 - 7059
  • [24] Ammonia production via a two-step Al2O3/AlN thermochemical cycle.: 2.: Kinetic analysis
    Galvez, M. E.
    Frei, A.
    Halmann, M.
    Steinfeld, A.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (07) : 2047 - 2053
  • [25] An intermediate-temperature direct ammonia fuel cell with a molten alkaline hydroxide electrolyte
    Ganley, Jason C.
    [J]. JOURNAL OF POWER SOURCES, 2008, 178 (01) : 44 - 47
  • [26] Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides
    Garcia-Mota, Monica
    Bajdich, Michal
    Viswanathan, Venkatasubramanian
    Vojvodic, Aleksandra
    Bell, Alexis T.
    Norskov, Jens K.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (39) : 21077 - 21082
  • [27] Performance characteristics of a compression-ignition engine using direct-injection ammonia-DME mixtures
    Gross, Christopher W.
    Kong, Song-Charng
    [J]. FUEL, 2013, 103 : 1069 - 1079
  • [28] On the formation of ammonia from the elements
    Haber, F
    van Oordt, G
    [J]. ZEITSCHRIFT FUR ANORGANISCHE CHEMIE, 1905, 44 (04): : 341 - 378
  • [29] Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
    Hammer, B
    Hansen, LB
    Norskov, JK
    [J]. PHYSICAL REVIEW B, 1999, 59 (11) : 7413 - 7421
  • [30] Electronic factors determining the reactivity of metal surfaces
    Hammer, B
    Norskov, JK
    [J]. SURFACE SCIENCE, 1995, 343 (03) : 211 - 220