Adaptive control of space proximity missions with constrained relative states, faults and saturation

被引:15
作者
Sun, Liang [1 ,2 ]
Jiang, Jingjing [3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Knowledge Automat Ind Proc, Minist Educ, Beijing 100086, Peoples R China
[2] Univ Sci & Technol Beijing, Inst Artificial Intelligence, Beijing 100086, Peoples R China
[3] Loughborough Univ, Dept Aeronaut & Automot Engn, Loughborough LE11 3TU, Leics, England
基金
中国国家自然科学基金;
关键词
Spacecraft proximity missions; Relative motion control; Fault-tolerant control; Input saturation; Relative state constraint; ATTITUDE TRACKING CONTROL; MODEL-PREDICTIVE CONTROL; NONLINEAR-SYSTEMS; OPERATIONS; GUIDANCE;
D O I
10.1016/j.actaastro.2020.05.016
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper studies a relative position and relative orientation control problem of close-range spacecraft proximity missions under control input saturation, actuator faults, relative state constraints, kinematic couplings, parametric uncertainties, and unknown external disturbances. The problem of control input saturation is handled with introducing the outputs of an augmented system into the controller, and relative state constraints are guaranteed by using barrier Lyapunov function in backstepping design. Actuator faults in dynamical model are compensated by element-wise adaptive estimations, while unknown dynamic couplings, parametric uncertainties, and unknown bounded disturbances are compensated by norm-wise adaptive estimations. Based on the developed adaptive nonlinear control strategy, relative motion states uniformly ultimately tend to small adjustable neighborhoods of zero, and if the initial relative states are constrained in the predefined ranges, then relative state constraints will never be violated. Simulation comparison validates the advantages of the control strategy.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 32 条
  • [1] [Anonymous], 2003, AIAA Education Series
  • [2] Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints
    Chen, Mou
    Ge, Shuzhi Sam
    Ren, Beibei
    [J]. AUTOMATICA, 2011, 47 (03) : 452 - 465
  • [3] De Ruiter A. H. J., 2001, AIAA GUID NAV CONTR
  • [4] Adaptive Spacecraft Attitude Tracking Control with Actuator Saturation
    de Ruiter, Anton. H. J.
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2010, 33 (05) : 1692 - 1696
  • [5] Model Predictive Control approach for guidance of spacecraft rendezvous and proximity maneuvering
    Di Cairano, S.
    Park, H.
    Kolmanovsky, I.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2012, 22 (12) : 1398 - 1427
  • [6] Saturated control of an uncertain nonlinear system with input delay
    Fischer, N.
    Dani, A.
    Sharma, N.
    Dixon, W. E.
    [J]. AUTOMATICA, 2013, 49 (06) : 1741 - 1747
  • [7] History of Space Shuttle rendezvous and proximity operations
    Goodman, John L.
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 2006, 43 (05) : 944 - 959
  • [8] Robust Fault-Tolerant Tracking Control for Spacecraft Proximity Operations Using Time-Varying Sliding Mode
    Hu, Qinglei
    Shao, Xiaodong
    Chen, Wen-Hua
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (01) : 2 - 17
  • [9] Nonlinear Tracking Control of Rigid Spacecraft under Disturbance using PID-type H∞ Adaptive State Feedback
    Ikeda, Yuichi
    Kida, Takashi
    Nagashio, Tomoyuki
    [J]. TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2015, 58 (05) : 289 - 297
  • [10] Closed-loop powered-coast-powered predictive guidance for spacecraft rendezvous with non-singular terminal sliding mode steering
    Kasaeian, Seyed Aliakbar
    Ebrahimi, Masoud
    Assadian, Nima
    [J]. ACTA ASTRONAUTICA, 2020, 166 (166) : 507 - 523