Substrate effect on the melting temperature of gold nanoparticles

被引:26
|
作者
Luo, Wenhua [1 ]
Su, Kalin [1 ]
Li, Kemin [1 ]
Liao, Gaohua [2 ]
Hu, Nengwen [2 ]
Jia, Ming [3 ]
机构
[1] Hunan Inst Sci & Technol, Coll Phys & Elect, Yueyang 414000, Peoples R China
[2] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
[3] Cent South Univ, Sch Met Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-TENSION; NANOSTRUCTURED MATERIALS; THERMODYNAMIC PROPERTIES; SIZE; PARTICLES; ENERGY; MODEL; AU; POINT; SHAPE;
D O I
10.1063/1.4729910
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Previous experimental, molecular dynamics, and thermodynamic researches on the melting temperature of Au nanoparticles on tungsten substrate provide entirely different results. To account for the substrate effect upon the melting point of nanoparticles, three different substrates were tested by using a thermodynamic model: tungsten, amorphous carbon, and graphite. The results reveal that the melting point suppression of a substrate-supported Au nanoparticle is principally ruled by the free surface-to-volume ratio of the particle or the contact angle between the particle and the substrate. When the contact angle theta is less than 90 degrees, a stronger size-dependent melting point depression compared with those for free nanoparticles is predicted; when the contact angle theta is greater than 90 degrees, the melting temperature of the supported Au nanoparticles are somewhat higher than those for free nanoparticles. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729910]
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Melting Characteristics of Superlattices of Alkanethiol-Capped Gold Nanoparticles: The "Excluded" Story of Excess Thiol
    Sidhaye, Deepti S.
    Prasad, B. L. V.
    CHEMISTRY OF MATERIALS, 2010, 22 (05) : 1680 - 1685
  • [32] Interfacial and volumetric melting regimes of Sn nanoparticles
    Robinson, L. D.
    Vikrant, K. S. N.
    Blendell, J. E.
    Handwerker, C. A.
    Garcia, R. E.
    ACTA MATERIALIA, 2022, 235
  • [33] Photophysical insights on effect of gold nanoparticles over fullerene-porphyrin interaction in solution
    Mitra, Ratul
    Bauri, Ajoy K.
    Banerjee, Shrabanti
    Bhattacharya, Sumanta
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2014, 132 : 61 - 69
  • [34] Collective Excitations and Dielectric Function of Self-Assembled Gold Nanoparticles on a Silicon Substrate
    Zhu, S.
    Chen, T. P.
    Cen, Z. H.
    Liu, Y. C.
    Liu, Y.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (05) : K39 - K42
  • [35] Size and composition dependence of melting temperature of binary nanoparticles
    Lu YunBin
    Liao ShuZhi
    Xie Bin
    Chen Jia
    Peng HaoJun
    Zhang Chun
    Zhou HuiYing
    Xie HaoWen
    Ouyang YiFang
    Zhang BangWei
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (05) : 897 - 900
  • [36] Logarithmic Size-Dependent Melting Temperature of Nanoparticles
    Liu, Zhiyuan
    Sui, Xiaohong
    Kang, Kai
    Qin, Shaojing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (21) : 11929 - 11933
  • [37] Structures and Energetics of Silver and Gold Nanoparticles
    Wang, Boyang
    Liu, Maoxin
    Wang, Yanting
    Chen, Xiaosong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (23) : 11374 - 11381
  • [38] Melting temperature of metallic nanoparticles embedded in a rigid matrix
    Vollath, Dieter
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2012, 103 (03) : 278 - 282
  • [39] Melting temperature of nanoparticles and the energy of vacancy formation in them
    Gladkikh, N. T.
    Kryshtal, A. P.
    Bogatyrenko, S. I.
    TECHNICAL PHYSICS, 2010, 55 (11) : 1657 - 1660
  • [40] Thermodynamic study on the melting of nanometer-sized gold particles on graphite substrate
    J. Lee
    M. Nakamoto
    T. Tanaka
    Journal of Materials Science, 2005, 40 : 2167 - 2171